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1 THE PHENOMENOLOGICAL APPROACH

A solid-solid phase transformation usually involves the formation, growth and coarsening of new
phases from a parent phase matrix. After the transformation, the sample consists of domains contai-
ning either the parent phase or one of the product phases. The shape, size and mutual arrangement of
the domains is called microstructure. Often, and it is the case of interest here, the typical size of the
domains is much larger than the atomic scale, but much lower than the macroscopic scale ; The inter-
mediate scale at which the domains are defined is called the mesoscopic scale. If we are interested in
the temporal evolution of such a microstructure, it is not relevant to reproduce all the atomic degrees
of freedom. A more efficient way is to develop a theory which is directly defined at the mesoscopic
scale.
The sample is thus described by a set of mesoscopic variables. These variables are defined from the
atomic scale by a spatial average over a small volume of size d3, where d is a length characteristic of
the mesoscopic scale. Then, we can define a coarse-grained free energy functional which is related to
the probability of finding a given mesoscopic configuration at equilibrium. This change in the scale
of the description has several consequences.
First of all, one has to take care that the parent phase and all the expected product phases can be
accurately described by the selected set of mesoscopic variables. This also means that the mesoscopic
approaches can not predict the formation an unexpected phases in the sample.
Another consequence of the choice of a mesoscopic description is more subtile. The fluctuations with
a characteristic size lower than d can not be reproduced by the mesoscopic variables. Therefore, we
need include the contribution of these fluctuations in the definition of the coarse-grained free energy
and assume that these fluctuations are at thermal equilibrium. In other words, we assume that the
relaxation time of the processes occurring at a scale lower than d is much lower than the characteristic
time of the phenomenon that we want to study. We are thus not too far from equilibrium.
As we are interested in the microstructural evolution and kinetics of phase transformations, we need
to extend the concept of coarse-grained free energy to situations in which the system is not in thermal
equilibrium. In principle, the free coarse-grained free energy can be defined starting from a fully
microscopic model[1, 2]. However, except for very simple models, the coarse-graining procedure can
not be performed. One rather assumes a phenomenological form for the coarse-grained free energy.
This approach is valid for a microstructural evolution in the late stage. Indeed, when the domains are
large enough, the microstructural evolution reduces to a dynamics of interfaces, and the movement
of interfaces only depends on a small set of macroscopic quantities such as the interfacial energies,
the equilibrium concentrations, the diffusion coefficients, etc.. Therefore, if we are only interested in
the late stage evolution, it is only required that the model correctly reproduces this set of macroscopic
quantities. In particular, in the phenomenological phase field models, we use the most simple analytic
expression for the functional that takes into account all the symmetries of the system and which
reproduces the macroscopic quantities of interest. This approach based on a Ginzburg-Landau free
energy functional is detailed in the following section.
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1.1 Definition of the fields
As mentioned in the introduction, the definition of the fields is an important step in the construction of
the phase field model. We only consider here the case of coherent phase transformations, i.e. transfor-
mations where all phases are built on a common lattice. The phases may differ by their composition
or degree of order. Moreover, we only focus on substitutional transformations, although most of the
ideas presented here can be easily adapted to coherent phase transformations involving interstitial
atoms.

FIG. 1 – Schematic representation of a coherent precipitate (left) and an incoherent precipitate (right)

The most simple case is a situation where the phase transformation involves phases that differ only
by their composition. In the case of a binary alloy, the mesoscopic field is simply the local concen-
tration in solute atom c(r). In the case of multicomponent alloys, we need to define more than one
concentration field, but we will not consider such cases during this course.
When the coexisting phases differ not only by their composition but also by their type of order, we
need to introduce fields to characterize the type and degree of order. There is a general approach for
the definition of these fields popularized by A. Khachaturyan under the name of "concentration wave
representation" [3].

1.1.1 Simple 1D example Let ri be the position of the common lattice sites. In a binary alloy,
the occupation probability of the site ri by a solute atom is called p(ri). Let’s start with a simple
example. Consider the 1D ordered structure presented in Fig 2. The structure is a succession of two
inequivalent sites represented by white and black circles ; The probability of finding a solute atom is
p1 on a ’white’ site and p2 on a ’black’ site. Therefore, the occupation probability by solute atoms is
alternatively p1 and p2. As shown in Fig. 2, the oscillating behavior of the occupation probabilities
can be conveniently described by a concentration wave :

p(r) = c+
φ

2
cos(k · r) (1)

where c = (p1 + p2)/2 is the average concentration in solute atoms, k = π
a

and a is the distance
between two lattice sites. φ is the order parameter, equal to p2 − p1 in this simple example. Of course
this concentration wave is only meaningful when the value is computed on a lattice site ri.

1

0

p

FIG. 2 – Concentration wave representation of a 1D ordered structure.

When the order parameter φ is equal to 0, the occupation probabilities on all sites become equal to
the average concentration in solute atoms c : The structure is a disordered solid solution (see Fig. 3a).
At low temperature, i.e. T → 0K, the occupation probabilities p1 and p2 tend to 0 and 1 : we have a
perfectly ordered structure. In that case the order parameter is either 1 or -1. The two corresponding
atomic configurations are drawn in Fig. 3. The two configurations correspond to the same atomic
structure, but they are translated from one another by a distance a. These configurations are called
translational variants.
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FIG. 3 – Sketch of the structures described by the concentration wave of Eq. 1. a) Disordered solid
solution. b-c) Translational variants of the ordered structure when η > 0 (b) and η < 0 (c). The shade
of gray is proportional to the occupation probability in solute atom.

1.1.2 General formulation To simplify the notations, we consider only a binary alloy. The alloy is
described by the set of the occupation probabilities in solute atoms at each site of a primitive unit cell
of the ordered structure {p(r1), p(r2), ..., p(rν)}. If we suppose that the common lattice is a Bravais
lattice, the values of the occupation probabilities can be expanded in Fourier series in the following
way :

p(~r) = c+
∑
j

[
A(~kj) exp(i ~kj · ~r) + c.c.

]
(2)

where c is the average concentration in solute atoms and c.c. stands for the complex conjugate. The
amplitude of the wave A(~kj) are complex numbers, and the wave vectors ~kj are situated in the first
Brillouin zone of the disordered phase. The order parameter φ is proportional to the amplitude of the
concentration waves. If we introduce the notation A(~kj) = φB(~kj) one can write

p(~r) = c+ φ
∑
j

[
B(~kj) exp(i ~kj · ~r) + c.c.

]
(3)

When φ = 0, we have the disordered phase where all sites are occupied with the same probability.
When φ 6= 0 we have the ordered structure. However, the definition of the order parameter (3) is
ambiguous. To avoid this ambiguity, we have to introduce an additional condition. Usually, we use
the condition that the perfectly ordered structure (i.e. the structure where all occupation probabilities
p(ri) are equal to 0 or 1) corresponds to an order parameter equal to 1.
Before showing how to select the appropriate set of wave vectors ~kj , we have to comment on the case
where 2 ~kj is equal to a vector ~G of the reciprocal lattice of the disordered structure. By replacing ~kj
by −~kj + ~G in expression (3), and using the fact that for a reciprocal lattice vector ~G and a lattice site
~r we have exp(i ~G · ~r) = 1, we come to the conclusion that B(~kj) = B∗(~kj). In other words, when
the wave vector ~kj is such that 2 ~kj belongs to the reciprocal lattice of the disordered structure, B(~kj)
is real.
We now have to select the appropriate set of wave vectors ~kj to describe a given ordered structure.
Several general results can be found under the assumption of the mean field approximation of a
pairwise interaction model [3]. These results are not presented here. In the present paper we show
how to select the wave vectors using a diffraction experiment.
The scattering factor at a site is a function of the occupation probability p and of the atomic scattering
factors : f = p fB + (1 − p) fA. The amplitude diffracted by the ordered crystal can be computed
using Eq. 3.

A(~q) =
∑

f(~r) exp(i ~q · ~r)

= f̄ R(q) + φ∆f
∑
j

[
B(~kj)R(~q + ~kj) +B∗(~kj)R(~q − ~kj)

]

where ∆f = fB − fA, f̄ = cfB + (1 − c)fA is a mean scattering factor and R(q) =
∑

exp(i ~q · ~r).
For an infinite crystal,R(q) is always equal to zero, except in the case where ~q is equal to a reciprocal
lattice vector of the disordered structure. Therefore the diffracted amplitude A(~q) is non zero only in
the following cases :
–• ~q belongs to the reciprocal lattice of the disordered structure. The reflections are called fundamental

reflections and the diffracted intensities are proportional to f̄ 2
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–• ~q + ~kj or ~q − ~kj belongs to the reciprocal lattice of the disordered structure. The reflections are
called superstructure reflections and the diffracted intensities are proportional to φ2 ∆f 2

As a conclusion, the concentration wave vectors kj are superstructure reflections which belong to the
first Brillouin zone of the disordered structure.

FIG. 4 – Body Centred Cubic Structure (left) and B2 ordered structure (right)

1.1.3 Worked example : the B2 structure Let’s first consider the disordered structure, i.e. the BCC
structure. The lattice parameter of the conventional cubic unit cell is called a. It is well known that
the reciprocal lattice of the BCC structure is a FCC structure with a lattice parameter 4π/a.
The B2 structure has a simple cubic Bravais lattice with a lattice parameter equal to a. The asso-
ciated reciprocal lattice is a cubic lattice with a lattice parameter 2π/a. The shortest superstructure
reflections are thus the vectors ~k1 = 2π

a
[100], ~k2 = 2π

a
[010], ~k3 = 2π

a
[001].

Using these wave vectors, and the fact that 2 ~k1, 2 ~k2 and 2 ~k3 belong to the reciprocal lattice of the
BCC structure, the concentration wave representation of the B2 structure is :

p(~r) = c+ φ
[
B1 cos(~k1 · ~r) +B2 cos(~k2 · ~r) +B3 cos(~k3 · ~r)

]
(4)

where B1, B2, B3 are real numbers. The B2 structure is invariant when we interchange the cubic axis
directions. It follows that B1 = B2 = B3. Finally, the value of B1 is selected using the assumption
that φ = 1 for a perfectly ordered structure. The perfect ordering corresponds to p(0) = 1 and
p([a

2
a
2
a
2
]) = 0. As a conclusion, we obtain the following concentration wave representation for the B2

structure
p(~r) = c+

φ

6

[
cos(~k1 · ~r) + cos(~k2 · ~r) + cos(~k3 · ~r)

]
(5)

The probability to find a solute atom on a ’white’ and ’black’ site is c+φ/2 and c−φ/2 respectively.
Order-disorder transitions on a fixed lattice are generally characterized by a loss of symmetry. One
then defines orientational and translational variants related to one another through the action of the
missing symmetry elements. In the particular case of the BCC→ B2 phase transition, the symmetry
elements which have been lost during the transformation are only translation, of type 1

2
a < 111>

where a is the lattice parameter. Consequently, the B2 structure can display two types of translational
variants. Two different translational variants meet along interfaces called antiphase boundaries. A
sketch of an APB in the B2 structure is shown in Fig. 5.

FIG. 5 – Antiphase boundary in the B2 structure. The structure is projected along a cubic axis.

The second translational variant is obtained from the first one by a translation of ~T = 1
2
a[111].

Therefore, the occupation probabilities can be deduced from (4) :

p(~r) = c+
φ

6

[
cos(~k1 · (~r + ~T )) + cos(~k2 · (~r + ~T )) + cos(~k3 · (~r + ~T ))

]
(6)

= c− φ

6

[
cos(~k1 · ~r) + cos(~k2 · ~r) + cos(~k3 · ~r)

]
(7)
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This expression means that the second translational variant is described by the same concentration
waves if we change the sign of the order parameter φ.

1.2 Free energy functional
The thermodynamic properties of a phase transformation are often described by a coarse grained free
energy F (c(~r), φi(~r)) which is a functional of the mesoscopic variables c(~r), φi(~r). We remind the
reader that this free energy functional is only valid for mesoscopic variables defined by a local average
over a small volume d3 where d is a length characteristic of the mesoscopic scale[1, 2].
The free energy functional is usually expressed as the sum of a homogeneous and heterogeneous
contribution. These contributions are detailed in the following subsections.

1.2.1 Homogeneous free energy We consider in this section an homogeneous system, i.e. a system
described by mesoscopic variables which do not depend on position. In that case, we define a free
energy density which is a function of the mesoscopic variables. The aim of this section is to detail the
procedure for generating a free energy density function which is suited to a given phase field model.
We first consider the case where the free energy density only depends on the concentration. Then, the
general case where both concentration and l.r.o. parameters have to be taken into account is presented.

Free energy density : f(c)
The most simple case is the phase transformation where the microstructure is described by the concen-
tration field only. In that case, the free energy density f(c) is a curve similar to the one presented in
Fig. 6, with minima associated to the equilibrium phases. Contrary to the macroscopic free energy
density fth, the free energy density f does not need to be a convex function.

c
c1 c2

fth

fd

FIG. 6 – Macroscopic free energy (solid line) and coarse-grained free energy (dashed line)

As mentioned before, the free energy density can, in principle, be computed from a microscopic mo-
del. In the method presented here, we use a phenomenological approach to model the free energy
density f(c). In this approach, f(c) is a simple function, whose minima are reached for the experi-
mental values of equilibrium concentrations. The latter can be directly read on the incoherent phase
diagram.
The most simple way to generate a smooth function whose positions of the minima are prescribed is to
use a polynomial expansion and to stop the expansion as soon as we have enough parameters to adjust
the desired properties of the function. For example, when only two phases coexist at equilibrium, the
most usual form of the free energy density is a polynomial expansion up to the 4th order, also called
φ2 − φ4 function. If c1 and c2 are the equilibrium concentrations the free energy density is

f(c) =
∆f

[(c2 − c1)/2]4
(c− c1)2(c− c2)2 (8)

where ∆f defines the scale of the free energy density. Note that this free energy function is symmetric.
Of cousre, if we have evidence that the problem is not symmetric, asymmetric free energy functions
can also be used.
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Free energy density : f(c, φi)
We now consider the general case where the free energy density f(c, φi) depends both on concen-
tration and on l.r.o. parfameters. In that case, we expect that the minimum values of the free energy
density are obtained for the sets of concentration and l.r.o. parameters which correspond to the equi-
librium structures.
In the phenomenological approach, we model the free energy density f(c, φi) by a simple function,
constructed to satisfy the following conditions :
– The minima of f(c, φi) should be obtained for the experimental values of equilibrium concentra-

tions. The latter can be directly read on the incoherent phase diagram. If the equilibrium values of
the order parameter are known, they can also be taken into account.

– The function f(c, φi) should be invariant with respect to all symmetry operation of the disordered
phase. In the concentration wave formalism, the expression of these symmetry operations is very
simple. It corresponds, most of the time, to a simple interchange between the l. r. o. parameters
values (φi ↔ φj) or to the modification of the l.r.o. parameter sign (φi → −φi).

A systematic way of generating a free energy density f(c, φi) satisfying the above conditions is to use
a polynomial expansion with respect to the l.r.o. parameters φi. Only the polynomial terms invariant
with respect to the symmetry operations have to be taken into account. The parameters of the expan-
sion are in principle functions of the concentration c. The polynomial expansion is stopped as soon as
we have enough degrees of freedom to adjust the desired properties of the function. In the following
paragraphs we detail the free energy expansion in simple cases.

Example : Free energy density for the B2 ordering
We consider a system quenched in a (c,T ) region of the phase diagram where only the stable structures
are BCC and B2. c1 and c2 denotes the equilibrium concentration of the BCC and B2 structures
respectively.
As we have seen in the previous section, the B2 ordering is described by the concentration wave
representation (4), i.e. by a concentration field c and a l.r.o. parameter field φ. We have seen that
the translation of a vector ~T = a

2
[111] corresponds in the concentration wave representation to a

change in the l.r.o. parameter sign φ → −φ. Therefore, the free energy functional has to be invariant
with respect to the sign of the φ. The expansion of the free energy density with respect to the order
parameter φ is

f(c, φ) = A0(c) + A1(c)φ
2 + A4(c)φ

4 + A6(c)φ
6 + ...

The parameters of the expansion are functions of the concentration Ai(c). We choose the most simple
expressions for these coefficients. First, when we set φ to zero, it is clear thatA0(c) represents the free
energy density of the disordered BCC solid solution. This density has a minimum for the concentration
c1. The most simple function is thus a quadratic function A0(c) = α ∗ (c − c1)2. Then, when we set
c to c2, f(c2, φ) must have two minima in symmetric position, corresponding to the two variants of
the equilibrium B2 structure. As we have seen with the φ2−φ4 function, this can be achieved with an
expansion limited to the φ4 terms where the coefficient in front of φ2 is negative. Then the free energy
density writes

f(c, φ) = α ∗ (c− c1)2 + A1(c)φ
2 + A4(c)φ

4 (9)

with the condition that A1(c2) is negative.
We want that the disordered state characterized by c = c1 and φ = 0 is a local minimum of the free
energy function f(c, φ). In other words for small increments δc and δφ, f(c1 +δc, δφ) must be always
positive. To the second order in δc and δφ we have

f(c1 + δc, δφ) = α (δc)2 + A1(c1) δφ
2 (10)

So the stability of the BCC solid solution requires that A1(c1) is positive. Therefore the sign of A1(c)
changes between c1 and c2. The most simple choice is to assume that A1(c) varies linearly with c. We
finally obtain

f(c, φ) = α (c− c1)2 − β (c− c′)φ2 + γ φ4 (11)

where c′ is between c1 and c2 (c1 < c2), and where α, β and γ are positive constants. At this point we
have four parameters entering the expression of the free energy density (11). The stability condition
of the B2 structure at c2 gives a relation between these parameters. However, we still have freedom
to select the value of the parameters. In that case, we usually impose unnecessary but convenient
conditions. For example, we can impose that the free energy of the ordered structure has the same
value than that of the disordered structure. The assumption of the phenomenological approach is that
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the precise shape of the free energy is not important, but only the position of the minima of the free
energy density function. This assumption is valid at long times when the system consists of large
domains of the equilibrium structure.

1.2.2 Heterogeneous free energy In the previous section, we have examined the free energy density
of a uniform system. In the present section, we extend the free energy to inhomogeneous cases.
The definition of the mesoscopic fields c(~r) and φi(~r) requires some coarse grain average. It is the-
refore assumed that the fields do not vary too rapidly. As a consequence, a first local contribution to
the heterogeneous free energy is simply the energy calculated for the local value of the fields. On the
other hand, the spatial variation of the order parameter has an energy cost and the simplest approxi-
mation is to include first order derivatives only, which yields the well-known Landau-Ginzburg free
energy functional :

F (c(~r), φi(~r)) =
∫
fhom(c(~r), φi(~r)) +

1

2
λ|∇c|2 +

1

2

∑
i

βi|∇φi|2 (12)

where we have assumed isotropy of the gradient terms. The gradient terms contribution must be
invariant with respect to the symmetry operation of the disordered state. For example, if we have the
symmetry φi ↔ φj , we have to set βi = βj . The gradient terms are key parameters in phase field
models. They control both the width and the energy of the interfaces. These points are detailed in the
next subsection.

Interfacial energy In the present subsection, we consider a flat interface, and we look for the equi-
librium shape and energy associated to that interface. To simplify the notations, we consider the case
where the microstructure is defined only by a concentration field c(r). We consider a flat interface
between two equilibrium domains. We thus have a one dimensional situation where the concentration
varies from c1 at x → −∞ to c2 at x → +∞ (see Fig. 7). We use the following Ginzburg-Landau

c2

c1

c

x

FIG. 7 – Concentration profile across a diffuse interface.

functional

F (c(x)) =
∫
f(c(x)) +

1

2
λ

(
dc

dx

)2

dx (13)

where F , f , and λ are now defined per unit area in the (yOz) plane. As will be shown later, in equili-
brium, the chemical potential µ = δF

δc
is uniform. Therefore the equilibrium profile is the solution of

the following differential equation :
df

dc
− λ d

2c

dx2
= µ (14)

This equation can be rewritten in the following way :

d(f − µc)
dc

= λ
d2c

dx2
(15)

When x goes to ±∞ we are in the bulk domains. It implies that the right hand side of the previous
equation is zero and that the equilibrium bulk concentrations c1 and c2 are given by the minimum of
g(c) = f(c)− µc. If we multiply Eq. (14) by dc

dx
and integrate we get

f(c)− µc− 1

2
λ

(
dc

dx

)2

= A (16)
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where A is a constant. By comparing the limits at ±∞, we get f(c1)− µc1 = f(c2)− µc2 = A. As a
conclusion, we have obtained the conditions :

f(c1)− µc1 = f(c2)− µc2 (17)
df

dc

∣∣∣
c1

=
df

dc

∣∣∣
c2

= µ (18)

These conditions corresponds to the well known common tangent construction (see Fig. 8).

f

c
c2c1

FIG. 8 – Common tangent construction to find the equilibrium concentrations.

There is only one length scale in the present theory. The width of the interfacial is thus related to the
correlation length which characterize the exponential relaxation of the concentration profile far from
the interface. When x is large enough, c(x) is close to c2, so it is possible to expand f(c) − µc in
Taylor series. In the first non vanishing order, Eq. (15) becomes

d2f

dc2

∣∣∣
c2

(c− c2) = λ
d2c

dx2
(19)

Therefore c(x) ≈ c2 −B exp(−x/ξ) where B is a constant and

ξ =

√
λ
/d2f

dc2

∣∣∣
c2

(20)

is the correlation length in the structure of concentration c2.
The surface energy σ associated with the interface is computed by subtracting the bulk energy (i.e.
the common tangent) from the total energy :

σ =
∫ f(c) +

1

2
λ

(
dc

dx

)2

− f(c1)− µ(c− c1)

 dx (21)

By using Eq. 16, the surface energy is given by the more compact expression :

σ = λ
∫ (

dc

dx

)2

dx (22)

where c(x) represents the equilibrium profile across the interface.
It is also important to see how σ depends on the gradient term λ and on the energy scale ∆f . We write
g(c) = ∆f g̃(c) where g̃ has no dimension. Using Eq. 16, we rewrite the interfacial energy :

σ = λ
∫ √

2∆f(g̃(c)− g̃(c1))

λ

dc

dx
dx =

√
2λ∆f

∫ c2

c1

√
g̃(c)− g̃(c1)dc (23)

As a conclusion the interfacial energy scales as
√
λ∆f .
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Width of interfaces in a phase field model The microstructural evolution at long time is characte-
rized by a coarsening of the microstructure, leading to a reduction of the interfaces. In that regime, the
driving force is the reduction of the interfacial energy. Therefore, a phase field model has to correctly
reproduce the experimental energies of the interfaces. On the contrary, when the size of the domains
is much larger than the width of the interfaces w, the microstructural evolution is not sensitive to
w. So if we are not interested in the first stages of the microstructural evolution, the model does not
need to reproduce the experimental interfacial energy. In a phase field model, w is usually used as a
free parameter whose value is chosen for numerical reasons. Indeed, in the computer, the continuous
kinetic equations of the model are discretized in space on a a mesh of linear size d. If we want the
discretized equations to predict the same microstructural evolution as the continuous model, we have
to ensure that the width of the interfaces w is much larger that the mesh size d. As a rule of thumb, an
optimal choice is close to w ≈ 4d.
We have seen that the interfacial energy σ scales as

√
λ∆f , and it is clear from (20) that the correlation

length ξ and the widthw scales as
√
λ/∆f . By selecting proper values for ∆f and λ, it is thus possible

to impose the values of both the interfacial energy and width.

1.3 Kinetic equations
Conserved field The relevant kinetic equation for a conserved field is

dc

dt
= −∇ · ~J (24)

where ~J is the flux given by
~J = −M(c)∇δF

δc
(25)

M(c) is a mobility coefficient which depends on the local concentration. For concentration profiles
varying slowly at the macroscopic scale, the gradient term entering the expression of the chemical
potential becomes negligible. In addition, close to the concentration of the matrix c1, the homogeneous
free energy density f(c) can be expanded to the second order. In that limit, the chemical potential is
linear with respect to the concentration and we obtain Fick’s law :

~J = −D∇c

where D = M(c)d
2f
dc2

∣∣∣
c1

is the diffusion coefficient.

Non-conserved field The relevant kinetic equation for a non-conserved field is simply a relaxation
proportional to the driving force :

dφ

dt
= −L δF

δφ
(26)

2 EXAMPLE : SEGREGATION IN BINARY ALLOYS

2.1 Segregation in Fe-Cr alloys
The ferritic-martensitic steels containing around 12% of chromium are considered for nuclear appli-
cations. But, under working reactor conditions, they can become brittle because of the precipitation
of a new chromium rich phase.
The Fe-Cr system is an ideal model system, because at low enough temperature the only stable struc-
tures are the iron rich phase called α (BCC) and the chromium rich phase called α′ (BCC) (see Fig.
9). The precipitation is coherent, and the lattice mismatch is small : The lattice parameters of pure Fe
and Cr are a0 = 0.2860nm, and a1 = 0.2875nm. The elastic contribution, proportional to the square
of (a1 − a0)/a0 = 0.5% is very small in this alloy and is neglected in this paper.
In this part, we show how to develop a phase field model to study the phase separation in Fe-Cr alloys.

2.2 Phase field model
Choice of the mesoscopic fields For this system, the choice of the mesoscopic field is rather ob-
vious because the low temperature structures only differ by their composition. In the model, we thus
describe the microstructural evolution using the mesoscopic field c(~r).
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FIG. 9 – The solid state miscibility gap in the Fe-Cr phase diagram from Ref. [5]

Choice of the free energy functional The non-equilibrium chemical free energy can be approxi-
mated by the conventional Ginzburg-Landau phenomenological coarse grained of the concentration
field :

F (c(~r)) =
∫
f(c(~r)) +

1

2
λ|∇c|2 d3r (27)

where f(c) is the local specific free energy. As explained above, f(c) must be chosen to reproduce
the equilibrium concentration of the coexisting phases c1 and c2. The most simple choice is the usual
φ2 − φ4 function :

f(c) =
∆f

[(c2 − c1)/2]4
(c− c1)2(c− c2)2 (28)

We are interested here in the microstructural evolution at 773K. Using an atom probe, Miller et al.
[6] give a solubility limit of Cr between 14% and 17%. Moreover, as it can be seen in Fig. 9, the
phase diagram is symmetric. In the model, we use a solubility limit of Cr equal to c1 = 0.15, and the
equilibrium concentration of the Cr rich phase is set to c2 = 1− c1.
We now have to select the value of the energy scale ∆f and of the gradient term λ to reproduce the
experimental interfacial energy and to select an interfacial width large enough to avoid numerical
problems during the integration of the discretized equations. In most cases, the computation of the
interfacial energy can only be performed analytically. However, for the simple functional considered
here, the free energy can be computed analytically. Indeed, reintroducing the definition (28) in Eq. 23
leads to the interfacial energy :

σ =
2
√

2

3
(c2 − c1)

√
λ∆f (29)

The correlation length can be computed using Eq. 20. It gives

ξ =

√
2

8
(c2 − c1)

√
λ

∆f
(30)

The characteristic size of the microstructures in Fe-Cr alloys are usually very small, so we choose a
discretisation length equal to d = 1nm. So the optimal choice of the parameter ν = ξ/d is close to 4,
but it has to be checked numerically that this value is large enough to avoid trapping of the interface
on the discretisation mesh.
Measurements of energy of the interfaces is often difficult to find in the litterature. In addition, the
accuracy of the measurement of the interfacial energies is usually rather poor because the interfacial
energies are obtained indirectly by fitting the growth laws of precipitates using approximate theories.
In the Fe-Cr system, we use the estimation of the interfacial energies made by Jacquet[5] using a
regular solution model. At 773K the interfacial energy is σ = 14mJ/m2.

Kinetic model As shown in the Fig. 10, the diffusion coefficients obtained experimentally for the
auto diffusion in α-Fe, for the impurity diffusion of Cr in α-Fe, and for the diffusion of Cr in Fe90Cr10
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are almost equal at 773K. Therefore we assume that the mobility does not depend on the local concen-
tration, and we use D = 4.5 10−19 cm2s−1.

dc

dt
= M∇2(

δF

δc
) (31)

FIG. 10 – Auto diffusion coefficient in α-Fe, impurity diffusion coefficient of Cr in α-Fe, and the
diffusion of Cr in Fe90Cr10 as a function of temperature. (from Ref. [5])

2.3 Numerical solution of the model
It is convenient to present the kinetic equation in a dimensionless form for the numerical solution.
This will also allow us to reveal the key physical parameters that control the system behavior. To do
this, we have to introduce the dimensionless quantities :

c̃ =
2 ∗ c− (c1 + c2)

c2 − c1
λ̃ = 4(ξ/d)2 (32)

f̃(c̃) = f(c)/∆f = (c̃− 1)2 (c̃+ 1)2 t̃ = t/t0 (33)

where t0 is a characteristic time of diffusion over a distance d.

t0 =
d2

M∆f
=

32 d2

D(c2 − c1)2

Using these notations, the driving force is :

δF

δc
=
df

dc
− λ∇2c =

2∆f

c2 − c1

[
df̃

dc̃
− λ̃∇2

d c̃

]

Finally the dimensionless kinetic equation is

dc̃

dt̃
= ∇2

d

(
df̃

dc̃
− λ̃∇2

dc̃

)
(34)

where∇d represents the discrete gradient. As explained before, the correlation length should be of the
order of the discretisation length d. Using the definition (32) we thus choose λ̃ = 4. It is striking that
the dimensionless kinetic has a universal form. If we are only interested in the microstructural evolu-
tion, we only need to know the equilibrium concentrations c1 and c2 and the diffusion coefficient D.
In particular, the interfacial energy which scales the energy of the model, is not used in the calibration
of the dimensionless equations. However, if we include the elastic strain energy contribution to the
model, the microstructural evolution would be the result of the competitive actions of the chemical
free energy and the elastic strain energy and the surface energy would explicitly enter the model.
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2.4 Simulation results
We select a composition in the middle of the miscibility gap, at a temperature T=773K. In the early
stages, the system is unstable. The microstructural evolution is thus characteristic of a spinodal de-
composition. The microstructural evolution predicted by the model 34, for the dimensionless time
t̃ = 300 is presented in Fig. 11.

FIG. 11 – Spinodal decomposition in a Fe50Cr50 after a dimensionless time t̃ = 300. Contour plot of
the 3D, 128x128x128 simulation box.
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