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ABSTRACT 
 

The various types of configurations formed in face-centered cubic (fcc) and body-centered 
cubic (bcc) structures by two interacting, non-coplanar, dislocation segments of various 
orientations are examined and discussed. The focus is on junction formation and on a particular 
interaction, the collinear interaction, which deserves much more attention than paid up to now.  
 
 
INTRODUCTION 
 

As first stated by Taylor [1], strain hardening in crystals stems from dislocation interactions. 
Within the widely accepted "forest model" [2, 3], the formation and the destruction of junctions 
or locks produced by attractive interactions between non-coplanar dislocations contribute to most 
of the flow stress in conditions of multiple slip. The stability of junctions is governed by self-
energies, which are mainly elastic in nature since the contribution of the dislocation cores is 
comparatively negligible. This allowed performing studies on particular junction configurations 
in several simple crystal structures, fcc [4, 5], see also [6], bcc [7, 8] and hexagonal close-packed 
[9]. More recent studies of individual junction configurations at the atomic scale [10, 11] and at 
the mesoscopic scale [12-15] have confirmed the validity of such elastic approaches. At the 
mesoscale, however, analytical elastic calculations cannot fully account for the mutual 
distortions of interacting dislocations lines. This is why dislocation dynamics (DD) simulations 
are particularly suited for a more precise treatment of such problems. 

The aim of the present study is to provide a global insight into the interactions and reactions 
of two dislocation segments in fcc and bcc crystals, stressing their dependence on the initial 
orientation of the lines. Some aspects of the simulation technique used in the present study are 
summarized. Mappings of dislocation reactions are then presented and discussed, with emphasis 
on an intersection process which has been largely ignored up to now and has recently be found to 
be of prominent importance, the collinear interaction. Concluding remarks are finally presented. 

 
 

METHODOLOGY 
 
Use is made of a DD simulation, in which segments with a finite set of orientations are 

embedded into an elastic medium and move by discrete translations in an underlying mesoscopic 
lattice with same symmetry elements as the considered crystal. An early version of this 
simulation, in which continuous dislocation shapes were discretized into edge and screw 
segments, has been described is some detail [16, 17]. The updated version used in the present 
work is based on the same principles, which are discussed in [15, 18], but makes use of an 



improved description of the dislocation lines. This allows one to treat dislocation reactions in a 
very precise, parameter-free, manner by incorporating the directions of dislocation reactions in 
the elementary base of vectors of the simulation [19, 20]. We focus here on the procedure for 
producing the intersection mappings shown in the next parts. 

  
 

Optimized Discretization of the Dislocation Lines 
 
Figure 1 illustrates, through the example of Frank-Read sources in fcc and bcc crystals, how 

the discretization of the dislocation lines in the DD simulation can be adapted to different 
crystallographic structures. An extension to the treatment of prismatic and first-order pyramidal 
slip in hcp crystals will be described in a separate publication (Monnet et al., to be published).  

 

 
 
Figure 1. Frank-Read sources expanding under stress in their slip planes in the absence of lattice 
friction. The source segments are of edge character and of length 4 µm. The detail of the loops 
shapes is mostly determined by the loading conditions. (a) -  1/2  [1 1 0](111)  slip in a fcc crystal 
(Cu).  (b) – 1/2[111]  (112 ) slip in bcc Ta. The <021> directions are those obtained by reaction of 
the slip systems [111]  (112 ) and   [1 1 1 ]  (11 2).  
 
 

In the fcc structure (Fig. 1-a), the glide loops are described using a base of 8 line directions 
per slip plane, namely the edge, screw, π/3 and 2π/3 directions with their two signs. In the bcc 
structure, 6 line directions per slip plane (two screw and four mixed) are sufficient if only {110} 
slip is accounted for. In order to treat all the junction formed by dislocations gliding in {110} 
and {112} planes, 12 and 20 lines directions are needed in {110} and {112} planes, respectively. 
The <021> directions shown in Fig. 1-b are those obtained by reaction of the slip systems 
1/2[111]  (112 ) and 1/2  [1 1 1 ]  (11 2).  

 
 
Mappings of Dislocation Reactions 

 
We consider the two slip systems (1) and (2) defined by their Burgers vectors bi ( i = 1, 2) 

and their slip plane normal ni. Along the intersection of the two slip planes, where junctions 
potentially form, a reference direction is chosen,   lj . The interacting segments, each in one slip 



plane, have line direction   li  (i = 1, 2). They are initially of same length and intersect each other 
in their midpoints (Fig. 2), making angles φ1 and φ2, respectively, with respect to   lj . These angles 
are measured in reference frames such that   n1 = −b1 × l1 and    n2 = b2 × l2. With this convention, 
two dislocation lines parallel to   lj, (φ1 = φ2 = 0) and with opposite Burgers vector are attractive.  

After relaxation, three types of configurations are obtained, which are illustrated in Fig. 2. 
Figs. 2-a and 2-c show two configurations corresponding to junction formation and repulsive 
interaction, respectively. A third type of configuration occurs, in which although two segments 
are attractive, the formation of a junction is not observed because it is not energetically favored. 
An example of such configuration is shown in Fig. 2-b; it is called a crossed-state after Wickham 
et al. [12]. The occurrence of crossed-states can be understood from a simple geometrical 
argument given by Friedel [3]. When a junction is formed, equilibrium at the triple nodes 
corresponds to a certain angle between the arms of the initial segments. This angle is necessarily 
larger than its value before junction zipping (cf. Fig. 2-a). Thus, if the two interacting segments 
initially make an angle larger than the equilibrium value, and even if they are attractive, no line 
tension equilibrium can be achieved and no junction can be formed. A last type of configuration 
consists of a few neutral states that cannot be characterized due to the too small magnitude of the 
interactions. For the sake of simplicity, neutral states and crossed-states are lumped into a 
common category of weak obstacles.  

 

 
 

Figure 2. Three simulated configurations of intersecting non-coplanar segments gliding in 
different slip planes. The dashed line represents the direction of intersection of the two slip 
planes. (a) - Attractive interaction: junction formation. The thick lines represent the initial 
configuration. (b) - Crossed-state: although the two segments are attractive, junction formation is 
not energetically favored. (c) - Repulsive interaction: the two segments move away from each 
other. 
 

 
The simulation of dislocations interactions and reactions is performed as follows. For a 

given set of interacting slip systems and for a couple of initial orientations of the dislocation 
lines, an initial configuration is built up. We consider two straight segments pinned at their 
extremities in order to mimic strong interactions occurring in real crystals with other forest 
dislocations. For the same reason, the initial length of the segments is taken to be   li ≈ ρ f

−1 /2 = 1 
µm, the typical length  associated with a forest density ρf = 1012 m-2. To discuss the influence of 
the segment's length, another length of 30 µm is also used in Fig. 7, below. This second type of 
configuration is dedicated to a comparison with simplified analytical models, which consider 



infinite dislocation lines. In the initial state, the midpoints of the two segments are placed at an 
approach distance of   d ≈ li /100 . Then, the two segments are let to relax and reach an 
equilibrium configuration such that the Peach-Koehler force on each discretized segment 
describing the lines is equal to zero. To speed up relaxation, the stress vs. velocity law is in all 
cases the one defined for fcc crystals, which entails high dislocation mobility. Isotropic elasticity 
is used throughout the present work. The simulated model materials are defined by their Burgers 
vector, Poisson's ratio, ν, and isotropic shear modulus, µ. The values used are b = 0.256 nm, ν = 
0.347 and µ  = 42 GPa for fcc crystals and b = 0.286 nm, ν = 0.33 and µ = 68.5 GPa for bcc 
crystals. However, within the restriction of isotropic elasticity, all the mappings presented in the 
next sections are generic and apply to all materials of same crystallographic structure. The reason 
is that within the present context, the configurations investigated depend on elastic interaction 
and line tension forces that scale with the product µb. Changes in the Poisson's coefficient from 
one material to the other induce only minor modifications.  

The boundary conditions of the simulations are chosen in order to investigate the properties 
of two isolated dislocations embedded into an infinite elastic medium. This configuration can 
easily be obtained with the help of periodic boundary conditions in a reference cell at least two 
times larger than the initial length of the dislocation lines. The nature of the relaxed 
configuration is identified as follows. If the two dislocation lines superimpose each other over a 
fraction of their length, the formation of a junction is stated. If the shortest approach distance 
between the dislocations has increased after relaxation, the configuration is necessarily repulsive. 
All the intermediate cases not accounted for by the above two criteria, are considered as cross-
states. 

The output of the simulations is presented for each couple of angles (φ1, φ2) in the form of a 
mapping indicating the nature of the final state, like in previous works on bcc metals [7, 12]. The 
properties of junctions, like their length or critical unzipping stress, can be derived easily from 
these results [15, 18], but will not be reported here in detail by lack of space.  

 
 

Comparison With Elastic Calculations 
 
Two elastic solutions, which derive from simplified models, yield boundaries that are 

superimposed to the computed mappings presented below. They are aimed at providing a guide 
and a check from elastic solutions less sophisticated than those given by the simulations. A first 
boundary is the locus of the points where junction formation is neutral, i.e., neither favored nor 
forbidden. This criterion can be obtained either by a condition of line energy minimization or 
equivalently by the condition of  line tension equilibrium at the triple nodes. It is calculated for 
straight segments, in isotropic elasticity and with an orientation-dependent line tension that does 
not include the usual logarithmic term. The corresponding expression can be derived easily [21]. 
The second boundary  delimitates the border between initially attractive and repulsive segments. 
It is calculated from the interaction force along the shortest approach distance of two rigid, 
infinite, lines. Kroupa [22] gave a simple solution to this problem (see also [23]). Both models 
assume that the interacting segments are rigid but, as discussed below (cf. Fig. 4), they may also 
lead to opposite predictions regarding the nature of the final state. The comparison with the 
simulations is nevertheless useful for the interpretation of the results.  
 
 



JUNCTIONS  IN  FCC AND BCC CRYSTALS 
 
Junctions in FCC Crystals 
  

Figure 3 shows the mappings obtained for the three types of slip systems interactions leading 
to perfect junctions in the fcc structure:  - the Lomer junction, of 1/2<110> type, which is sessile, 
- the glissile junction, also of 1/2<110> type, which is glissile in one of the two intersecting slip 
planes, and - the Hirth lock, where the interacting Burgers vectors are orthogonal and the 
reaction product is of the <200> type. The solutions of the two simple elastic models mentioned 
above are superimposed to the simulation results.  

The three configurations depicted in Fig. 2 are found in these graphs. The mappings are 
periodic with a period (φ1 = ± π , φ2 = ± π), since these translations leave the initial configuration 

 
 

 
 

 

 
 

Figure 3. Mappings of dislocation 
intersections in the fcc structure. The length 
of the initial segments segments is1 µm. 
The slip system (2) is  1/2[011](11 1 ) .  
Slip system (1):  
(a) 1/2  [10 1 ](1 1 1 ) , Lomer junctions.  
(b) 1/2  [10 1 ](1 1 1) , glissile junctions.  
(c)  1/2  [01 1 ](1 1 1 ) , Hirth locks. 
�: junction formation,   o: repulsive 
interaction,  x: crossed-state.   
 The thin lines represent the calculated 
boundary between attractive and repulsive 
states and the thick lines the calculated 
neutral condition for junction formation.



unchanged (cf. Fig. 2-a). The domain of junction formation takes the form of lobes encircling the 
origin. These lobes depart from a circular shape due to the orientation-dependence of the line 
tension and approximately follow the predictions of the elastic models (thick lines in Fig. 3). The 
boundary between attractive states, i.e., junctions and crossed-states, and repulsive states is also 
relatively well accounted for by Kroupa's formula (thin lines in Fig. 3). The assumptions made in 
the two elastic estimates also manifest themselves for some orientations through conflicting 
predictions, as is clearly seen in the case of the glissile junction. In Fig. 3-b, on top of the central 
lobe, junctions are formed between attractive segments, whereas for rigid segments the reaction 
is energetically unfavorable. Inversely, at the bottom of the upper lobe at right, junction 
formation is energetically favorable for rigid segments, but does not occur because the segments 
are repulsive. Such discrepancies stem from the fact that the two elastic estimates reflect in an 
imperfect manner two aspects of the same global behavior. The junction lobes derive from a 
simplified calculation of the energies of the initial and final states, whereas the boundary 
between attractive and repulsive states derives from a calculation of the initial interaction force, 
i.e., of the initial derivative of energy  vs. reaction coordinate. As illustrated by 4, the two 
estimates may yield opposite predictions in the presence of an energy barrier. Whether or not the 
latter can be overcome by the dislocations depends on some complex balance between line 
tension and interaction forces, as will be discussed in the next part. 
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Figure 4. Schematic diagram of elastic 
energy (W) vs. reaction coordinate (x) for 
junction formation. A calculation of elastic 
energy predicts junction formation if the 
final state has a lower energy than the initial 
state. The initial slope yields the initial 
interaction force. If it is positive, the initially 
repulsive dislocation can reach the state of 
minimum energy only if they are able to 
overcome an energy barrier.  

 
According to the forest model [2, 4], the strength of junctions is, in first approximation, 

inversely proportional to the length of the initial segments. It also exhibits a geometrical 
dependence on the angles (φ1, φ2), which is slightly anisotropic due to the orientation dependence 
of the line tension. One may note that the strength of a junction is by definition zero at the 
transition between junctions and other states, so that the periphery of the junction lobes 
corresponds to the weakest configurations. This strength diverges at the origin, since the two 
parallel lines are fully recombined. Indeed, the length of residual arms being zero, an infinite 
stress is required to unzip the junction. Assuming than the global strength of an interaction is 
mostly due to junctions and depends on the area enclosed by the junction lobes, we see that the 
glissile and Lomer junctions should have rather comparable strengths, whereas the Hirth lock, 
whose stability is due to the orientation-dependence of the line tension, is a rather weak obstacle. 
Many other details can be inferred from simple considerations. For instance the lobe of the 
glissile junction is elongated along the y-axis because the segment (2) is of edge character at φ2 = 
π/2. It has a high elastic energy, which favors junction formation. 



Junctions in BCC Crystals 
 

In bcc crystals, dislocations of Burgers vector 1/2<111> principally glide in {110} and 
{112} planes. Püschl [7], has classified the different types of interactions in the course of a 
detailed study of the stability of junctions in anisotropic elasticity. The reaction product is always 
found to be of the <100> type. For dislocations reacting in {110} planes and forming stable 
junctions, three different types of mapping configurations are obtained. By reason of symmetry it 
is sufficient to consider the interaction of a primary system, for example 1/2[111]  (1 10), with 
any other Burgers vector and the three slip planes that contain it, for example 1/2  [1 1 1](011) , 
1/2  [1 1 1](1 01)  and 1/2  [1 1 1](110) . One can easily check that in the first case, the [010] junction 
is sessile and of mixed character  (    lj = [11 1 ]). In the second case, it is also of mixed character 
(    lj = [111]), but glissile in   (1 01). Wickham et al. [12] have studied the two related mappings. 
The third case is illustrated by Fig. 5-a; it corresponds to a sessile edge junction of line direction 

    lj = [001]. Due to the multiplicity of additional reactions arising when {112} slip systems are 
accounted for, only one example is shown here (Fig. 5-b). 

The qualitative considerations developed in the previous section also apply to the present 
case. From the viewpoint of junction stability, the main difference between fcc and bcc crystals 
resides in the higher energy of the reaction product in bcc crystals, since its Burgers vector 
squared is larger than that of the parent segments by a factor of 4/3. This results in smaller 
junction lobes, as compared to those of the glissile or Lomer junctions (cf. Figs. 3-a and 3-b).  

At low temperature and in the presence of a lattice friction on screw dislocations, dislocation 
loops become elongated in the screw direction, which is that of the less mobile species. As 
plastic flow is mostly governed by the properties of screw dislocations,  strain hardening 

 
 

Figure 5. Mappings of dislocation intersections in the bcc structure. The symbols have same 
meaning as in Fig. 3. The length of the interacting segments is 1 µm. Slip system (1): 
1/2  [111](1 10) . System (2) : (a)  1/2  [1 1 1](1 1 0) , (b)  1/2  [1 1 1 ](1 12 ) . 
 



 
essentially depends on the interactions between screw dislocations and the forest. Then, the 
mappings reduce to a set of horizontal and vertical data lines drawn for segments with screw 
orientation, from which one can deduce the characters of the forest dislocation lines that strongly 
interact with screw dislocations. 

Finally, in bcc metals and at low temperature, the flow stress is a complex superposition of 
friction stress and forest density, and it is not proportional to the square root of the forest density 
as in fcc crystals [24]. A screw dislocation line pinned between two obstacles does not achieve 
equilibrium bowed-out shapes under increasing stress. Rather, the screw portions move forwards 
by the thermally assisted nucleation of kink-pairs. Thus, all the dislocation movements 
associated with junction formation and unzipping are sensitive to the applied strain rate or 
temperature and kinetic effects can no longer be ignored. In short, the mappings presented here 
are only meaningful in the absence of lattice friction, i.e., at high temperatures.  

 
 
THE COLLINEAR INTERACTION 
 

To each slip system is associated a cross-slip system with same (collinear) Burgers vector; 
the two slip planes intersect along a line parallel to their common Burgers vector. The non-screw 
dislocations of each system play the role of forest obstacles with respect to the dislocations of the 
other system and their interaction is called the collinear interaction. Upon intersection, mutual 
annihilation of the lines can take place according to the reaction b1 - b1 = 0, which is equivalent 
to the formation of a highly stable junction with zero Burgers vector.  A simulated sequence of 
collinear annihilation is shown in Fig. 6.  

 
 

 
 
 
Figure 6. Simulation of collinear annihilation in the fcc structure. (a) – The initial configuration 
consists of two non-coplanar, attractive lines, of mixed character and with Burgers vectors of 
opposite sign. (b) – Annihilation takes place along the direction of intersection of the two slip 
planes (dashed line), which is parallel to b. (c) - The final configuration is made up of two 
composite segments in equilibrium at double nodes along the intersection of the two slip planes. 
 
 

For the collinear interaction in fcc crystals, there is only one type of mapping per Burgers 
vector. Figs. 7-a and 7-b, were obtained for segments of respective lengths 30 and 1 microns, 
respectively, in order to illustrate a length effect that is discussed below. If one considers the 
interactions of {110} and {112} slip systems in bcc crystals, there are three different 



configurations for the collinear interaction: one only for the interaction between 
crystallographically equivalent slip systems and two between {110} and {112} slip planes, of 
which one is shown in Fig. 7-c. 

 

 

 
 
Figure 7. Mappings of the collinear 
interaction. The superimposed lines have 
same meaning as in the previous part. �: 
junction formation,   o: repulsive interaction,  
x: crossed-state.  
(a) fcc structure, length of the dislocation 
segments: 30 µm. System (1): 
1/2  [011](1 1 1) , system (2): 1/2  [0 1 1 ](11 1 )  
(b) Same as (a), but with segments of length 
1 µm. The two arrows in (a) and (b) point at 
a change in final configuration with different 
segment length (cf. Fig. 8). 
 (c) bcc structure, with segments of length 1 
µm. System (1): 1/2  [111](1 10) , system (2): 
1/2  [1 1 1 ](1 01) . 

 
As in the previous part, predictions from the elastic theory of dislocations are superimposed 

to the simulation results. In contrast to the case of junctions, the total elastic energy is always 
reduced by the collinear annihilation, except along the singular linesφ 1 ± φ 2 = ±π . Along these 
lines, the two initial segments have same character and their projected line tensions exactly 
balance in projection along   li . Thus, the initial configuration is already in equilibrium. 
According to Kroupa's formula, the repulsive and attractive states are localized in parallel bands 
of same total area since half of the configurations are repulsive (or attractive). There are, in Figs. 



7-a and 7-b, four small double lobes centered on the orientation φ1 = φ2 = ± π/2, inside which the 
interaction changes sign. This orientation corresponds to non-interacting initial segments 
perpendicular to   li  and of edge character. The bcc mapping (Fig. 7-c) is rather similar, except 
that the boundary between attraction and repulsion no longer includes small localized domains 
where the interaction changes sign, but very flat local minima.  

For long interacting segments (Fig. 7-a), the simplified elastic predictions are in very good 
agreement with the simulated results. The neutral states and crossed-states are localized near the 
singular lines and small lobes defined above. In contrast, with shorter segments length (Fig. 7-b, 
see also Fig. 7-c), the domain of collinear annihilation largely expands into the previous domain 
of neutral and repulsive states. The repulsive and neutral states are now localized around the 
regions of weak interaction and null energy balance. This predominance of collinear 
annihilations is due to the increased flexibility of the short dislocation lines, as induced by the 
logarithmic factor in the line tension [4, 15, 25]. This results in a reduction of the energy barrier 
opposing annihilation that is depicted in Fig. 4. Figure 8 illustrates this effect in the case of two 
initially repulsive straight lines. Thus, the average strength of the collinear interaction should be 
significantly larger than that of junctions, due to both the larger probability of occurrence of the 
reaction, as can be checked by comparing Figs. 3 and 7, and the higher stability of the final 
configuration. The interest of the collinear annihilation resides in the fact that it occurs in an 
athermal manner and induces annihilation events even in the absence of cross-slip. Other 
consequences of this interaction on dislocation microstructures and plastic flow will be discussed 
in a separate publication (Madec et al., submitted). 
 
 

 
 
 
Figure 8. Interaction of two initially repulsive straight segments (φ1 = 115° , φ2 = 22°, see arrows 
in Figs. 7-a and 7-b). The configurations are seen along the slip plane of the horizontal line. (a) -  
With segments of length 30 µm, a stable repulsive state is obtained. (b) to  (d) - With segments 
of length 1 µm,  the saddle point associated with the repulsive interaction can be overcome 
owing to a smaller line tension. The dislocation lines are then able to reach their minimum 
energy configuration corresponding to mutual annihilation.  
 
 
CONCLUDING REMARKS 

 
The present study shows that DD simulations are well suited for predicting accurately  the 

outcome of the interaction between two non-coplanar dislocation segments, in the absence of 
lattice friction. Checking the properties of these individual configurations is, in fact, a mandatory 
step, preliminary to any attempt at a quantitative investigation of forest hardening.  

Although the present work was performed in isotropic elasticity, there are two manners to 



perform a more refined treatment in anisotropic elasticity. An approximate procedure, which 
should capture most of the effects of anisotropy, consists in simply tabulating the anisotropic 
local line tension in DD simulations. Rigorous solutions can be obtained through the use of 
coupled DD and Finite Element codes. An illustration of the use of both methods can be found in 
[26]. 

The mappings presented here were obtained in the absence of applied stress. They are 
necessarily modified in the presence of an applied stress, from which one can infer for instance 
which types of junctions are unzipped the most easily. However, as the flow stress of a crystal 
depends on complex averages over individual configurations that are less simple than the 
symmetrical ones examined here, the question of forest hardening can be treated quantitatively 
only by performing mass simulations on large dislocation densities [15].  

A detailed study of the collinear annihilation has been presented at the scale of individual 
configurations, showing that the annihilation of dislocations gliding in slip and cross-slip 
systems can occur easily and in an athermal manner. As this interaction leads to extremely stable 
reaction products, it has a significant impact on microstructures and flow properties (Madec et 
al., to be published). Its study also reveals a strong influence of the average length of the 
interacting lines through line tension effects. This effect also manifests itself on all the critical 
stresses for remobilizing dislocations segments blocked after a reaction. It is in no way negligible 
if one considers that the average dislocation density and segments length evolve by orders of 
magnitude along a stress-strain curve. 
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