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1 Introduction

Dislocation motion and interactions are the main processes controlling the plasticity
of crystalline solids. When a dislocation glides by an elementary atomic step in a
crystal, it shears it locally in a direction and by an amplitude that define its Burgers
vector b (1; 2). Such a discrete process contrasts with elastic deformation, where the
crystal lattice is only smoothly distorted under stress and in a reversible manner. The
elastic theory of dislocations, which mostly derives from Volterra analysis of linear
defects in an elastic continuum, provides a good description of the energetics of these
defects. Nevertheless, important properties of a dislocation are governed by the highly
distorted region surrounding its geometric line, the dislocation core, whose dimension
is a few interatomic spacings. Hence, plastic deformation is a complex phenomenon
that involves the modeling of many physical processes at different times and length
scales.

Simulations of dislocation dynamics and interactions carried out at the mesoscopic
scale in the last 20 years, with input parameter values taken from atomistic simulations
or experimental measurements, have demonstrated the usefulness of this numerical
tool. The aim of dislocation dynamics (DD) simulation is to establish, within a multi-
scale approach, connections between dislocation properties at the elementary scale
and continuous models for the plasticity of bulk materials. In addition, DD simula-
tions allow fair and direct comparison with experiments. At present, these simulations
are considered as a key element for the development of micro- and nano-materials. In-
deed, in these materials, the discrete nature of plastic strain can hardly be smoothened
out into a continuum framework.

This article presents the methodology used in DD simulation for implementing the
motion, multiplication and interactions of dislocation lines in response to an applied
load. The technical aspects of simulations on bulk materials, as well as for micro-
and nano-samples are discussed. All illustrations are taken from the free software pro-
grams ’microMegas1’. This simulation code inherits some features from an earlier
’edge-screw’ simulation, the very first three-dimensional DD code (3–5) published at
the beginning of the 1990s. It also incorporates many original improvements taken
from other DD simulations (6–15). The review articles (16) and the previous refer-
ences may be of interest for retracing a brief history of the DD simulation technique
over the last 20 years.
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Whereas there are some differences between simulation codes, there are basic features
that they all have in common. As explained in Section 2, all simulation codes dis-
cretize dislocations into a finite set of degrees of freedom attached to line segments.
The forces on these discrete lines are estimated from the elastic theory of dislocations
(Section 3) and the positions of the dislocation segments are updated according to
material-dependent equations of motion (Section 4). Section 5 presents a more diffi-
cult part of DD simulations, which consists in implementing "local" rules that account
for dislocation core properties. The last two sections are dedicated to initial conditions
and boundary value problems (Section 6) and to concluding remarks.

2 Dislocation line and space discretization

As far as elastic properties are concerned, and like in most DD simulations, the mi-
croMegas code routinely treats perfect dislocations. This is the most convenient so-
lution for large-scale mesoscopic computations. Nevertheless, specific applications
sometimes require the implementation of glissile dissociations, which is easily per-
formed (17; 18). It must, however, be noted that the detail of contact reactions be-
tween partial dislocations is poorly known at the atomic scale, except for a few simple
materials (19).

As usual in DD simulations, curved dislocation lines are discretized into a succession
of straight segments. The main specificity of the microMegas code consists in posi-
tioning the origins and ends of these segments on a discrete simulation lattice. The
latter should in principle have a lattice parameter homothetic to that of the investi-
gated material. To allow for further developments, the discrete sites occupied by the
segments extremities are actually restricted to those having cubic symmetry. Then,
dislocations in almost compact crystals with non-cubic symmetry can be dealt with by
approximation. For example, in the case of Zr (20), an orthorhombic approximation
of the lattice was used in order to obtain an ideal hcp cell. This solution implies a dis-
tortion of the real lattice by 2.7% along the c axis; it has little effect on the numerical
results, as the true elastic constants are used in the computations.

a) b) c) d)

Figure 1: Four dislocation configurations discretized on a simulation lattice with dif-
ferent line models. The number of segments needed is 121, 100, 91 and 68, respec-
tively, when the number of possible directions per slip system is a) - four; b) six; c)
eight (microMegas model) and d) twelve. The critical Frank-Read stresses vary at
most by 3.5%.

As the dislocation configurations are defined on a lattice, the degrees of freedoms are
simply defined by the position, length and velocity of the segments. In 3D, the loca-
tion of a segment is defined from the coordinates of its origin Oi and a vectorial length
`i. This vector defines the direction and length of the segment; it is necessarily paral-
lel to a direction of the underlying lattice. The set of available directions is listed for
each slip system as a simulation input. Whereas the original versions of microMegas
were based on only four directions per slip system (4; 5), the current versions consider
a set of eight directions. Such a number is a compromise between opposite require-
ments. As illustrated by Fig. 1, decreasing the number of segment directions allows
describing the curvature of dislocation lines with less segments per unit length (with-
out affecting the simulation results). With more numerous directions the description



is more refined, but the programming of segments motion and reactions with other
segments becomes more complex. For many materials, eight segment directions per
slip systems represents an optimum value (Fig. 2). Indeed, this solution includes the
essential edge and screw directions, but also four additional mixed directions parallel
to the slip plane intersections, that is, the junction directions (21). This is fully suffi-
cient to simplify the treatment of the most important dislocation reactions in the most
complex crystal symmetries.

1 5

3

7

2

8 6

4

d1

d5

d3

d7

d2

d8
d6

d4

b

a)

S1 S2(t)

S2(t+δt)

S3

S1 S2(t)

S2(t+δt)

S4

S3

Figure 2: a) Schematic representation of the elementary vectors used per slip system
to discretize dislocation lines in microMegas. The vectors `1−8 (in black), are used
for the definition of the segments directions and the vectors d1−8 (in blue) for the
corresponding displacement directions. b) and c) Geometrical procedures for the dis-
placement of a segment and its length variation. b) The trapezoidal area swept by
segment S2 during a time step δt (in grey) produces and increment of plastic shear.
This procedure accounts for the direction of the two neighboring segments. c) Be-
fore the displacement, a local rule for connections imposes the presence of a "pivotal
segment" S3 (segment of zero length) between segments S2 and S4.

The definition of a, the lattice parameter of the DD simulation is non-trivial as it con-
stitutes a scaling factor for all distances. Depending upon the problem considered,
it can be helpful to set a minimum spacing between slip planes (22) or a minimum
distance for dislocation-dislocation interactions. Technically, a can take any value in
the simulations, even one that is smaller than the atomic lattice parameter. This last
option is sometimes used for performing comparisons with atomistic simulations and
to evaluate the limit at which the elastic theory of dislocations looses its validity.

A significant advantage of lattice-based DD simulations is that a large amount of cal-
culations and data can be stored in look-up tables, which reduces the number of oper-
ations to be performed per time step. For instance, in microMegas, the finite number
of segment directions allows tabulating parts of the stress field computations (23).
Another important example is related to the displacements of segments. Knowing the
directions of the two nearest-neighbors of each segment, the length variations of the
three segments can be easily calculated for any displacement amplitude. They can be
drawn from a look-up table giving elementary displacements for all possible combi-
nations of the three connected segments. Finally, in lattice-based simulations, most
calculations are carried out on integers. They are, therefore, exact when the coordi-
nates of the segment extremities are restricted to sub-lattice sites such that they ex-
clude operations on non-rational fractions. This mathematical aspect is particularly
advantageous for simulation procedures treating the detection of forest dislocations or
the implementation of periodic boundary conditions. Hence, for each material or type
of problem, the definition of an optimal simulation sub-lattice and its associated ta-
bles of lengths and displacement vectors is a critical part of the simulation setup. Such
tabulations are now available in microMegas for the most common crystallographic
structures (cubic, fcc, bcc, hcp, dc, etc...).

As the lengths and curvatures of the dislocation lines evolve with time, the discretiza-
tion procedure must be applied at each simulation time-step in order to add or remove



segments along the lines. As illustrated by Fig. 3, this operation mainly consists into
introducing or removing pivotal segments of zero length along the dislocation lines.
As changing the line discretization is a discontinuous operation, such changes must be
conducted on a fixed geometry. This is why discretization operations can be applied
only at the beginning of time steps, before the force computations on segments. Such
operations are not trivial and should introduce minimal perturbation of the line con-
figurations, otherwise drastic reductions of the time step would be necessary to reach
the final configuration.
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Figure 3: Discretization of a long segment (S1) into three shorter segment (S2,S1,S3).
In the new configuration, the aligned segments are connected by pivotal segments (S4,
S5) that constitute additional degrees of freedom distributed along the dislocation line.

The displacement of a segment induces a variation of the lengths of the two segments
to which it is connected (Fig 2). This inter-dependency of the segments lengths im-
plies, for the sake of efficiency, that the length of all dislocation segments be similar
and close to the average value ¯̀

dis that is specified in the simulation input. Simple
discretization procedures are implemented in order to reach this condition. They are
applied to all segments, with some specific treatments for particular line configura-
tions. A segment i of length `i is assigned for discretization and will be discretized
into three shorter segments (Fig 3) when one of the following conditions is met:

- `i > 2 ¯̀
dis: The maximum length of segments is reached.

- `i > ¯̀
dis and the length of one neighboring segment is larger than ¯̀

dis: Addi-
tional degrees of freedom are locally required to better describe the local curva-
ture.

- `i > 0.5 ¯̀
dis and one end of i touches a singularity along the line, like a pinning

point, a junction end or a planar defect. A detailed description of the dynamics
is locally needed in such cases.

All the operations required to perform these discretizations, as well as several steps
involved in the contact reactions of dislocations, imply some reconstruction of the
connectivity of the lines. Again, such topological tasks benefit from the finite number
of combinations of the segment directions, for which tabulated optimal procedures are
available. In short, the main function of these connectivity procedures is to incorpo-
rate pivotal segments along the discrete dislocation lines in order to smoothen out the
dislocation curvatures. It must be noted that the number of pivotal segments can be
up to 30% of the total number of segments in a simulated dislocation microstructure.
Given the total number of segments, however, pivotal segments do not bring any ad-
ditional computing penalty, as they have no length. They do not alter the number of
operations involved in the calculations of interaction forces and the collision proce-
dures. Special procedures are nevertheless useful during the computations to eliminate
avoidable pivotal segments between two aligned short segments.

3 Force calculation

In a crystal, a stress field σ of any origin modifies the total elastic energy. As dis-
location motion tends to reduce this energy, dislocations are submitted to a config-
urational force per unit length, the Peach-Koehler (PK) force. This force is written



f = (σ · b) × ξ, where ξ is the unit vector associated to the local tangent to a dislo-
cation line of Burgers vector b. Once PK forces are known at reference points along
the dislocation lines, the temporal evolution of dislocation configurations can be com-
puted, as shown in the next section. As the PK force only depends on elastic materials
properties, its computation is a general and basic feature of all DD simulations.

By reason of symmetry, the integration points (IPs) at which the PK force is calcu-
lated are usually set in the middle of segments. Sometimes, the IPs have to be moved
to other locations, mostly when they are close to a discontinuity in the curvature of
a dislocations line. This typically occurs on segments ending at a junction line or a
surface. Then, the IPs are moved to a fixed distance, λ, from the line discontinuity. λ
is then a parameter, the distance from a stress field singularity at which the PK force
is calculated. The two quantities λ and the simulation lattice spacing a are essential as
they allow bypassing the recently developed non-singular continuum elastic model of
dislocations (24). For most simulations a value of λ ≈ 10b is satisfactory.

The total force that is calculated at each IP is decomposed into four contributions de-
riving from: i) the applied stress field (σapp) driving dislocation motion, ii) the non
local stress field (σint) arising from the whole dislocation microstructure except the
considered segment, iii) a local line tension accounting for the line curvature close to
the IP and, in some cases, iv) an image correction arising from the presence of surfaces
and interfaces. It is worth noting that this last contribution is only a small fraction of
the total force on most segments (less than a few percent in many problems). It is,
however, critical, as it controls some microstructural and confinement effects.

The contribution of σapp can be treated in different manners. In simple cases, σapp

is assumed to be spatially uniform in the simulated volume. Its evolution in time is
then determined by a monitoring process that mimicks real deformation tests, for in-
stance in tension or compression. Non uniform stress fields can also be applied. In
such cases, discrete solutions defined at reference locations in the simulated volume
are interpolated at the segments IPs. These solutions are drawn from either experiment
or coupled continuum simulations. An example of the last case is presented in Sec-
tion 6.

To estimate the force arising on a segment IP from interactions with other segments,
the total interaction stress field σint is determined as the sum of the individual fields
from all other segments in the microstructure. In isotropic elasticity, there are efficient
analytical expressions for calculating these interaction stresses (2; 23). Attention must
be paid to the fact that these expressions are mechanically correct only for closed dis-
location loops in infinite media. Hence, the fields of dislocation lines ending at free
surfaces in finite simulation volumes have to be corrected (25; 26). The solution for the
stress field of a straight segment in anisotropic elasticity can be found in (27; 28), but
its complexity limits its use in massive simulations; in terms of computing time, the
anisotropic computations are one order of magnitude longer than the isotropic ones.

The computation of Peach-Koehler forces is by far the most CPU-consuming part of
DD simulations. No matter how efficient is the expression for the stress field of seg-
ments, the total amount of operations required for pair interactions scales as O(N2) for
a system of N segments. Hence, the computational load quickly becomes too expen-
sive in large-scale simulations. For this reason, numerical algorithms were developed
in the past years in order to accelerate force computations.

The fast multipole algorithm (29–31) provides an efficient mean to account for distant
interactions. Whereas sophisticated solutions are appropriate for multi-million seg-
ments simulations (15), simpler solutions based on the domain decomposition of long-
range interactions (see for instance (32)) constitute a good compromise for most sim-
ulations. When periodic boundary conditions are used, the evaluation of long-range
fields arising from outside the elementary simulation cell is obtained from this last
algorithm by summing the periodic contribution of the replicas. For obvious reasons,



this last contribution is usually neglected above one or two layers of replicas.

The main difficulty in implementing parallel computation in a DD code arises from
dislocation patterning. Indeed, the standard regular domain decomposition algorithm
is not well suited for dealing with the local occurrence of dislocation-rich regions.
Simple alternative solutions are, however, available for computations running in mod-
ern multi-core workstations. One of them is implemented in the microMegas code;
it is based on a partitioning algorithm that distributes most of the computation load
between CPUs and updates the positions of segments in all the nodes of the parallel
calculation at the end of each time step. This simple strategy is RAM-expensive, but
gives for most computations a reasonably good load-balance up to 20 CPUs and with
more than 104 segments. Large-scale parallel simulations require more complex algo-
rithms involving distributed memory (33). This last approach is presently not imple-
mented in the microMegas simulation code, in order to facilitate further development
of the microMegas code by its users.
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Figure 4: Regularization procedures for calculating the local line tension of a segment
S1 (schematic). Grey arrows depict the vectorial radius of curvature of the lines at
IPs. a) The IPs of S1 and of two distant segments S2 and S3 define an arc of circle. A
minimum curvilinear distance is imposed between segments S2 and S3. b) Particular
case of a segment close to a junction segment (S2). On the junction side, the arc of
circle stops at the extremity of S2 to account for the presence of a line discontinuity.
The unit vector ξ defining the dislocation line tangent at the IP is also plotted. Note
that ξ is not necessarily parallel to the segment direction.

According to the elastic theory, the stress field that a curved dislocation exerts on itself
diverges logarithmically at short distances (2; 34). This stress singularity is artificial,
and should ideally be regularized by taking into account the physical nature of the
core region. This difficult problem was recently investigated by Cai et al. (24), who
provided a solution that may accommodate some input from atomistic simulations.
Nevertheless, most DD simulations are still based on simpler regularization proce-
dures developed in the early days of dislocation theory (34–37). All these procedures
lead to an expression for the self-interaction, also called the local line tension, that is
proportional to 1/R[ln(R/a0) + O(1)]. R is the local radius of curvature of the dis-
location, a0 ≈ |b| is a measure of the width of the core distribution (the core ‘radius’)
and additional first-order geometrical terms are contained in O(1). The uncertainty on
the value of a0 is the main source of error; it leads to significant errors (up to 20%)
when R/a0 approaches unity, as is the case for simulations carried out at the nanome-
ter scale. In the microMegas code, four different expressions for the local line tension
are pre-defined (34–37). In addition, it is also possible to make use of pre-tabulated
line tension values. This last option presents an advantage because it allows imple-
menting the elastically anisotropic line tension in a simple manner with the help of the
DisDi code2 developed by J. Douin (38). For many problems, most of the contribution
of anisotropic elasticity is well reproduced in DD simulation by considering only a

2see DisDi home page at: http://pc-web.cemes.fr/Personnel/douin/Disdi-Page



local anisotropic line tension whose computation is numerically transparent.

There is no well-defined value for the length of the portion of line that has to be regu-
larized at each IP for the force calculations. Practice shows that this length cannot be
limited to the nearest-neighboring IPs. The reason is that the segments lengths signif-
icantly fluctuate along discretized dislocation lines. Hence, it seems reasonable to set
a constant regularization length defined as a fraction of the discretization length (typ-
ically 0.2 ¯̀

dis). Figure 4-a, shows how the local curvature radius entering the expres-
sions for the local line tension is geometrically obtained. From this construction, the
local line direction ξ and the dislocation character are determined at each IP. A mod-
ified regularization procedure is applied to a few particular IPs, like the ones located
close to the triple node of a junction or near a point where the line has cross-slipped.
In such cases, the continuous arc of dislocation line is stopped at the point where the
line singularity occurs. This procedure is illustrated by Fig. 4-b.

4 Motion and time integration

During a time step in the microMegas simulation code, the segments move as a whole
in a lattice, in well-defined crystallographic directions and at constant velocity. This
topological constraint justifies the definition of a unique IP per segment for evaluating
the velocities. This approach with a single IP per segment is not justified for nodal DD
simulations, which have to consider non-local schemes for the motion equations (15)
or alternative computation strategies based on the principle of virtual work (9; 13; 39).

Once the effective force is known at the IP of segment i, the velocity vi is defined
with the help of a mobility law. In practice, the line velocity is locally determined by a
balance between the elastic PK forces per unit length and a resistive dissipative force,
which may arise from the thermally activated motion against the lattice resistance (or
Peierls barrier), phonon drag, and other elementary interactions (4; 5; 40; 41). As vi
is character-dependent in many materials, more than one mobility law is usually de-
fined in a simulation. In microMegas, the calculation of the velocity at the IPs is not
a function of the segment direction, but rather of the regularized dislocation character
as defined in Fig. 4.

In most DD simulations, the specificity of the material considered becomes apparent
upon integrating the motion of dislocation segments. Space is missing to present all the
currently used velocity laws and only the simplest and most common one is discussed.
Defining, τ tot

i as the resolved shear stress related to the total force defined in Section 3
and τ∗i the effective resolved shear stress that drives the motion of segment i. Then,

vi = 0 if τ∗i ≤ 0, with τ∗i = |τ tot
i |−τf and

vi = sign(τ tot
i )

τ∗i bi

B
if τ∗i > 0. (1)

In Eq. 1, τf is a dry friction stress parameter accounting for elementary mechanisms
such as pinning by impurities and B is a viscous drag coefficient, of which the value is
typically 10−5Pa.s in pure metals. This material parameter is temperature-dependent
below the Debye temperature and accounts for the dissipative processes associated to
dislocation glide (40). In materials with a high lattice resistance, Eq. 1 does not apply
and alternative relations accounting for the process of kink-pair nucleation and prop-
agation along the lines are implemented (17; 20; 42; 43).

In quasi-static deformation conditions, the elementary time step is normally taken
large enough (a few ns in fcc-like materials) so that inertial effects can be neglected
and dislocations glide with a steady state velocity. The explicit Euler forward (EEF)
algorithm is the standard method of integration used in DD simulations



r(t + ∆t) = r(t) + v(t)∆t (2)

When inertial effects have to be included, the Newton equation of motion can always
be defined and is complemented by a Verlet algorithm to account for the dislocation
effective mass (44–46). The EEF explicit algorithm is preferred in most simulations,
whenever its use is justified, as it is computationally inexpensive. The analysis of the
stability and accuracy of the EEF integration method provides a simple criterion to fix
the simulation time step. A "good" elementary time step, δt, is such that, in average,
the mobile segments are predicted to glide over a distance of about ¯̀

dis/100 per time
step. As ¯̀

dis depends on the symmetries of the slip geometry and on the scaling of
the simulation lattice (2), the optimization of δt is a multi-parameter problem. For in-
stance, a large increase in dislocation density imposes decreasing the simulation lattice
and, therefore, the simulation time step. Conversely, in materials with low dislocation
mobility, the time steps can be larger, which allows reaching larger plastic strains in an
equivalent simulated volume. Besides, it can be noted that the integration of disloca-
tion dynamics is improved when the sequence of segments displacement is performed
in a decreasing order of segments velocities. A catalog of velocities is also useful for
anticipating intersections with forest segments during a time step (Section 5). Indeed,
as the displacements of the segments are treated one after the other, the position of
the simulation lattice node where a contact interaction is expected to occur should be
preferentially determined in the area swept by the fastest segment.

A recurrent misunderstanding about lattice-based simulations is concerned with the
occurrence of artifacts arising from the discrete integration of segments displacements.
For instance, it is sometimes erroneously guessed that slowly moving segment should
be artificially immobilized when the time step is small. In fact, displacements are per-
formed in the continuum and the positions of the segments are calculated using real
coordinates, r(t). The discretized positions, x(t), are defined on the lattice sites near-
est to r(t); they are only used in force calculations and in the procedures for detecting
segments intersections in order to optimize the computations. For the slow segments,
a specific procedure makes use of the difference r(t)−x(t) to reduce the frequency of
force calculations. This procedure is equivalent to using a larger simulation time step
for slow segments exhibiting real displacements much smaller than the discrete ones.

The interaction between two segments increases rapidly with decreasing distance,
which implies increasing velocities in the case of attractive interactions. As disloca-
tion intersections are very frequent in 3D DD simulations, a fraction of these contact
interactions should, in principle, lead to a drastic reduction of the simulation time step
and of the computing efficiency. For this reason, a maximum glide distance dmax and
a saturation stress τsat are defined in microMegas. When the effective stress on a seg-
ment is larger than τsat, this segment is supposed to be in an energy basin and its
displacement amplitude is reduced to elementary steps of the underlying lattice. Then,
the path leading to equilibrium is simply modeled like in a cellular automaton.

A wealth of information is obtained from the motion of segments. We focus here on
the calculation of the plastic strain εp and the plastic rotation W p. For a segment i of
Burgers vector bi, the increment of plastic shear per time step is given by

δγp
i =

biδAi

V
(3)

where δAi is the area swept during a glide step, and V is the volume of the sheared
body. From the increments of plastic shear on any slip system k, one can compute the
tensorial increments



δεp
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where n
k

i and l
k

j are the components of the unit vectors parallel to the slip plane nor-
mal and the Burgers vector, respectively.

5 Dislocation core properties and simulation local rules

In this section, we discuss the treatment of basic dislocation core processes, focusing
on the local simulation rules for cross-slip and the modeling of climb, as well as local
procedures implemented to account for dislocation contact reactions or interactions
between dislocations (annihilation, junction formation) or between dislocations and
other crystal defects.

Screw dislocation cross-slip reduces the elastic energy of the crystal; it occurs for
screw dipole annihilations, the bypassing of localized obstacles (Fig. 5) and in many
other circumstances. This process involves a core transformation and is, therefore,
thermally activated in most experimental conditions. Cross-slip events can be mod-
eled using a Monte-Carlo algorithm when the activation energy, which is material-
dependent, is known. The rules for cross-slip in fcc materials that were established
in (4; 5) were further used in several simulations (13; 30; 47). The probability P for a
screw dislocation segment of length ` to cross-slip during a time step δt is

P = A
`

`0

δt

δt0
exp

(
−W

kBT

)
, (6)

where `0 ≈ 1 µm and δt0 ≈ 1 ns are scaling factors, kB is the Boltzmann constant,
T is the absolute temperature and A ≈ 1 is a parameter adjusted to experiment (5;
48). W is the activation energy of the type of cross-slip process considered, which
can be derived from different models. For instance, in relation with the Escaig model
(see (49)) and that of Brown (50), the following expressions were proposed for (a) a
dislocation immobilized in its glide plane and (b) a moving dislocation (4; 48)

(a) W = V
(
|τ (g)

int | − τIII

)
(b) W = V

(
|τ (cs)

eff | − τIII

)
, (7)

where the interaction and effective stresses are respectively resolved in either the glide
plane (g) or in the cross-slip plane (cs). V is the activation volume, which is material-
dependent and constant as long as the applied stress is not too high, and τIII is the
thermally activated critical stress for the onset of stage III in the stress-strain curves
of fcc crystals. Values for these two quantities can be drawn from experiment in the
most commonly investigated fcc crystals. For other crystal structures, the energetics
of cross-slip is poorly understood. In such cases, the expressions used for cross-slip in
fcc crystals are applied without justification, or replaced by simple rules (51; 52).

Dislocation climb is a non-conservative mode of dislocation motion involving the ab-
sorption of point defects by the lines or their emission. Accordingly, incorporating
climb in a DD simulation implies taking into account point defect diffusion in the
presence of dislocations. The complexity of such a coupling explains why the vast
majority of simulations either only deal with dislocation glide, or treat climb as a



 a)                          b)                         c)
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Figure 5: Relaxation of a screw pile-up produced by a spiral source in a copper grain
of diameter 4 µm. The grains boundaries are impenetrable to dislocations. Blue seg-
ments: dislocations lying in the glide plane of the source; red segments: cross-slipped
segments. The resolved shear stresses are identical in the primary and cross-slip
planes.

kind of conservative glide motion in the climb direction governed by a constant drag
coefficient (10; 53). This simplified approach is, however, unable to capture essen-
tial features like the temperature dependence of the dislocation climb rate, the high-
temperature climb regimes where point-defects are emitted by other dislocations, or
the occurrence of dislocation climb without mechanical driving force. This last phe-
nomenon is observed when there is an excess of point defects in the bulk with respect
to the equilibrium concentration, for instance under irradiation or after quenching. At
present, only a single 3D simulation, which was developed by Mordehai et al. (54; 55),
is incorporating the coupling of a concentration field of diffusing point defects with
dislocation dynamics. It must be noted that in this work, the dislocations only climb
but do not glide. Indeed, the simultaneous treatment of these two modes of motion is
posing a challenging problem because of the disparity in time scales between climb,
which is a quite slow process, and glide that is orders of magnitudes faster.

When two dislocations approach each other at a short distance, their very strong elas-
tic interaction may lead to the formation of particular configurations, which, in turn,
affect their dynamics. Two such dislocations typically repel each other locally or adopt
a transient attractive configuration that leads to a local annihilation or to the formation
of a bound state like a junction, or a crossed state (56–58). As dislocations are linear
defects, many short-range interactions and contact reactions necessarily occur during
plastic flow. Hence, the ability of a DD simulation to deal precisely and efficiently
with the location and by-products of such interactions is a critical issue. The devel-
opment of microMegas (21) was partly motivated by this problem. Indeed, enforcing
dislocation motion on a lattice facilitates the prediction of short-range interactions and
the modeling of reactions by significantly reducing the number of degrees of freedom.

In microMegas, the prediction of short-range interactions encountered by a disloca-
tion segment moving by discrete distances and with discrete lengths variations is quite
straightforward. The corresponding algorithm is based on the determination of the in-
tersection between the trapezoidal area swept by the segment (see Fig. 2) and a list
of immobile segments or faceted boundaries in its vicinity. Such calculations are ex-
tremely fast (even with a large number of segments) if the decomposition of the simu-



lated volume in sub-domains, as defined in the stress field calculations (Section 3), is
capitalized with a look-up table of segment neighbors.

At the first potential intersection detected during a time step, the moving segment
is stopped upon contact. The method adopted to deal with reactions of non-coplanar
segments is illustrated by Fig. 6. First, a special discretization procedure is turned on
to inject new degrees of freedom along the dislocation lines. New pivotal segments
are introduced on the two lines along the potential reaction direction, that is, along
the direction of intersection of the two glide planes. The resulting configuration is
considered as a local seed for a dislocation reaction. This initial contact configura-
tion is then let free to evolve under the effect of long-range elastic interactions and
the local line tensions. If two portions of lines with Burgers vectors bi overlap, an
effective length of junction is automatically defined at the overlapping portions with
a Burgers vector bj =

∑
i bi (see Fig. 6 for a description of the two initial configu-

rations that must be considered in the simulations). For simplicity, all junctions are
considered as sessile dislocations in microMegas whatever the nature of bj and over-
lapping segments are immobilized in the initial reaction direction. With uniform load-
ing conditions, this simplifying assumption provides a fairly good description of all
the junction contributions to plastic flow (59), including those of the recently discov-
ered multi-junctions3 (60) (see Fig. 7). The implementation of a more sophisticated
description of the junction dynamics including the properties of glissile junctions is a
difficult task, but can be realized in lattice based DD simulations (85). This point is
regarded as an important future step in the development of the microMegas code. Be-
sides, it must be noted that the strength of the present procedure is that the dynamics
of junction zipping and unzipping do not require any specific operation. It is simply
controlled by the dynamics of the parent dislocation lines.

a)

ℓj

b)

Figure 6: Junction formation in microMegas (schematic). a) Upon contact between
two parallel attractive lines, an incipient junction of length `j is formed by two por-
tions of line parallel to the direction of intersection of the two glide planes (dashed
line). The overlapping lines are discretized and further immobilized, which creates a
junction. At the junction extremities, pivotal segments are introduced to let contiguous
segments zip or unzip the junction. b) Attractive intersection of two segments initially
not parallel to the junction direction. Pivotal segments are introduced at the contact
point. In the next simulations steps, a junction can then be zipped just like in a) by the
displacement of the contiguous segments.

Annihilation reactions between two overlapping segments such that bj = 0 are defined
in the simulation as a particular type of junction. In such cases, the overlapping sec-
tions of dislocation line are removed and additional pivotal segments are introduced
along the lines at the extremities of the virtual junction to satisfy the Frank’s rule of
the conservation of Burgers vector and maintain the continuity of the lines. More de-
tail on this major simulation rule can be found in (61).

The problem of dislocation interactions in a matrix containing a second phase is a
complex problem where two different cases have to be considered. If the volume frac-

3In microMegas, only axial ternary junctions are reproduced, as the modeling of ternary zig-zag config-
urations implies an exact description of glissile binary junctions



a)

3A

3A

4B

4B

4D

bi-junction

tri-junction

b)

Figure 7: Binary and ternary axial junction configurations in bcc iron at high tem-
perature under an non-symmetric applied stress. The initial length of the interacting
segments is 1 µm. The nature of interacting segments is defined using the notations
of Schmid and Boas for slip systems in bcc crystals. a) The first two segments (3A
and 4B) form a binary junction with line direction [010]. b) Upon adding the third
dislocation (4D), a ternary junction is formed on the initial binary junction direction.
Notice that the junction length (i.e., its stability) is larger for the ternary junction.

tion of precipitates is large and (or) if the interphase has specific properties, there is a
boundary value problem to solve, which has to be treated in some detail (Section 6).
Alternatively, when considering strengthening by small and distant particles, use can
be made of simple local rules (see for instance the work by Mohles et al. (62; 63)).
Dislocation interactions with small particles (whose coordinates are listed or randomly
distributed in the simulated volume) can be represented by a unique variable, a pre-
cipitate shearing stress τs, whose definition and physical meaning is discussed in the
context of microMegas simulations (64; 86). τs defines a shear resistance related to the
mechanical work of the dislocation when it shears a particle with given cross-sectional
area in its slip plane. In this framework, the simple case of incoherent precipitates is
then reproduced when τs = ∞ and the case of coherent precipitates is accounted for
with finite values of τs (65; 66). Hence, depending on the amplitude of τs and the
contact length between dislocations and precipitates, a dislocation may or may not
shear precipitates When precipitate shearing is impossible, a precipitate can only be
by-passed by the so-called Orowan bowing mechanism, that leaves an Orowan dislo-
cation loop around the precipitates. A simulation of this process is shown in Fig. 8.
Attention must be paid here to the case of very small obstacles whose bypassing be-
comes thermally activated and therefore request additional rules in DD simulations.

6 Initial configuration and boundary conditions solutions

Plasticity is well known to be a phenomenon that significantly depends on the thermo-
mechanical history of the sample and on boundary conditions at external or internal
surfaces. This sensitivity is even amplified in DD simulations where careful attention
has always to be paid to these conditions.
A wide range of initial dislocation microstructures can be used. The simplest config-
urations contain Frank-Read (FR) sources with various densities, lengths and spatial
distributions in the slip systems. Such starting configurations are hardly representative
of real dislocation microstructures, which are rather made of three-dimensional net-
works. A well-known problem of FR source configurations arises from the artificial
distribution of permanent pinning points they introduce in the microstructure. In con-
sequence, mechanisms like dislocation starvation or patterning cannot be simulated in
a small finite sample with such initial conditions. Artifacts associated with FR sources
can be partly eliminated by imposing a large prestrain and cutting out an effective sim-



Figure 8: A simulated volume with periodic boundary conditions containing a large
density of small spherical precipitates. For clarity, only the precipitates and dislocation
lying in a section of thickness 1.5 µm are imaged (65).

ulation volume after relaxation (67). An alternative and very flexible solution, which
was utilized in many problems, consists in initiating the simulations with a random
distribution of dislocation loops. These loops can be either planar glissile loops or,
preferably, prismatic dipolar loops made up of four edge segments with same Burg-
ers vector gliding in two different planes. A relaxation is then performed (with or
without applied stress) on this microstructure. A realistic 3D dislocation network is
then formed, which is interconnected by junctions and contains no artificial pinning
point (68). A interesting discussion on the influence of initial configurations on the
modeling of plasticity in sub-micrometric simulated samples can be found in (69).

In many large-scale simulations, the objective is to model plastic flow in a volume rep-
resentative of bulk conditions. For this purpose, periodic boundary conditions (PBCs)
can be applied to reduce the effect of boundaries in the simulated volume (70). PBCs
are presently the conditions used by default in microMegas. In the past ten years, they
have proved to be a very efficient tool for balancing dislocation fluxes at the bound-
aries of the simulated volume and imposing mechanical equilibrium. However, the use
of PBCs in a volume containing tangled lines is a delicate problem (71). In particular,
a dislocation loop expanding in a volume with PBCs can undergo strong interactions
with its own replica, which may lead to spurious annihilations. The most obvious so-
lution to that problem, which is implemented in microMegas, consists of rotating and
(or) deforming the simulated volume in such a way as to obtain that the slip planes of
dislocations are changed when they re-enter the elementary cell (72). As dislocations
must reenter the simulated volume on a crystallographically equivalent glide plane,
the number of non-equivalent solutions is finite and specific to the shape of elemen-
tary cell. It is worth pointing out that the artifact of PBCs can never be completely
eliminated. Hence, the gliding distance of an expanding dislocation before it under-
goes strong interactions with its replica must be evaluated in order to define the domain
of validity of a simulation in terms of plastic strain. Fortunately, spurious interactions
induced by PBCs may be mitigated by the effect of cross-slip on dislocation dynamics.

The elastic interaction between a dislocation and a planar defect, for instance a free
surface, is inversely proportional to the distance. Hence the effect of this interaction
on dislocations is expected to be small in macroscopic systems and to becomes sig-
nificant only at very small approach distances of the boundaries. For this reason, it
seems natural to assume that image forces matter only for dislocations in volumes
of linear dimensions around 1 µm and less. This issue is thus particularly important
for the modeling of small confined structures like microelectronic devices or MEMS,
which exhibit quite large surface-to-volume ratios. As discussed in some detail by
Schwarz (16; 73), it is sufficient in many cases to account for only the force acting on



segments intersecting a surface or an interface. In first approximation, non-contact im-
age forces only modify the velocity at which dislocation are emerging before touching
a surface. The effect of a free surface is then to maintain the angle of contact of a dislo-
cation with the surface at a particular value. A physical approximation can be used to
determine the latter, which is determined by a compromise between two forces (2; 8),
see Fig. 9). The first force arises from the condition of surface mechanical equilibrium
and tends to rotate the segment towards the normal to the surface. The second one is
quite general, as a dislocation line always tends to rotate towards the screw direction of
minimum elastic energy. Taking into account both terms, the local line tension acting
on a segment that emerges at a free surface is modified and takes the form

ffs =
µb2

4π(1− ν)λ
[n1|(1− ν cos2 β) tan θ|+n2|(2ν cos β sinβ)|], (8)

where λ is the distance from the point at which the modified line tension is applied
and the point at which the segment intersects the surface. This quantity is a simula-
tion parameter which can be tuned, for instance to reproduce the critical thickness for
plastic relaxation in thin epitaxial layers (74; 75).

θβ

λ

b

n1n2

Free surface

Figure 9: Projection of a segment touching a free surface on its glide plane. Two
competing forces act on this segment. One arises from image forces. It depends on the
angle θ and tends to rotate the segment towards the normal to the surface. The second
one depends on the character via the angle β and tends to rotate it towards the screw
direction.

In the last years, more and more complex boundary conditions were used in DD sim-
ulations, as illustrated by Fig. 10. The plasticity of multi-phased materials (76; 80),
small samples with complex shapes (73) or polycrystalline materials (77) is now mas-
tered. This progress was made possible by the development of numerical couplings
of DD simulation codes with FEM codes in order to impose mechanical equilibrium.
There are two different approaches four such couplings, namely the superposition
method (25; 78; 79; 81) and the discrete-continuous model (75; 82; 83). For more de-
tail, readers interested in such aspects of DD simulation techniques are referred to a
critical review of the two methods (84).

7 Concluding Remarks

In this article, the main features of DD simulations were addressed with emphasis on
the microMegas code. The progress achieved in the last few years opens the door to
more and more complex studies in the plasticity of materials. As illustrated by Fig. 11,
one can distinguish two general classes of numerical experiments.

On the one hand, mesoscopic simulations of dislocation dynamics in a representative
volume element with periodic boundary conditions, that is, with dimensions compa-
rable to the volume attached to Gauss points in FE methods, can be used to check



Figure 10: Example of a MDC simulation applied to a complex boundary value prob-
lem (80). In γ/γ′ superalloys, the dynamics of dislocations is driven by several me-
chanical parameters. In a simulated elementary volume, there are misfit and internal
stresses at the interface between the cuboid γ′ precipitates and the channels of the
γ phase. a) The initial dislocation configuration after relaxation. b) After a tensile
plastic strain of 0.2 % along the [001] axis.

and (or) improve physically motivated models for dislocation-based plasticity. In this
case, DD simulations function like a numerical coarse-graining method by establish-
ing a connection between discrete and continuous descriptions of plastic flow.

On the other hand, DD simulation is a unique technique for the prediction of plastic
properties in micro and nano-objects (including nano-structured materials). Indeed,
in sub-micrometric objects the discrete, heterogeneous and discontinuous nature of
plastic deformation can hardly be smeared out in a continuum framework. Then, DD
simulations can be considered as an upper-scale model for atomistic simulations. The
latter are needed to investigate elementary dislocation properties of dislocation, but
cannot access large time scales and, therefore, cannot integrate collective properties in
dislocation dynamics when they control plastic flow.

Finally, the comparison between experiment and DD simulations certainly has strong
potentialities in the expanding domain of local stress and strain fields measurements.
Presently, the field evaluations obtained by experimental techniques (TEM, EBSD,
x-ray diffraction, DIC, etc ...) cannot be directly related to the mechanical properties
of the investigated material. This is because the prediction of plastic properties imply

1μma) 3μmb)

Figure 11: Two different studies on copper single crystals by DD simulations. a) Size
effects: deformation of micropillars. b) Dislocation patterning: cell structure in a [001]
tensile test. The simulated volume and one replica are shown to illustrate the use of
PBCs.



solving a complex inverse problem. The dynamics of a dislocation is governed by the
stress deriving from a Peach-Koehler force on its line. The latter is not the average
stress measured in a small surrounding volume element. In addition, experiments usu-
ally provide a snapshot of the stress evolution, whereas plastic flow is inherently a
dynamic phenomenon. For these reasons, constructing simulated dislocation config-
urations that reproduce experimental mean-field stresses appears as an attractive, but
challenging, approach to a long-standing problem.
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