Les publications du laboratoire

[1] Structures of quasicrystals: Where are the atoms ?
D. Gratias and M. Quiquandon
Philosophical Magazine 88 (2008) 1887–1903.

[2] Simulations of high-resolution electron microscopy images of icosahedral quasicrystals
M. Quiquandon, J.T. Beauchesne et D. Gratias
Philosophical Magazine 88 (2008) 1941–1948.

[3] Interaction of carbon clusters with Ni(100): Application to the nucleation of carbon nanotubes
H. Amara, C. Bichara et F. Ducastelle
Surface Science 602 (2008) 77–83.

[4] Understanding the Nucleation Mechanisms of Carbon Nanotubes
in Catalytic Chemical Vapor Deposition

H. Amara, C. Bichara et F. Ducastelle
Phys. Rev. Letters 100 (2008) 056105.
doi: 10.1103/PhysRevLett.100.015702

[5] New Coarse-Grained Derivation of a Phase Field Model for Precipitation
Q. Bronchart, Y. Le Bouar, and A. Finel
Phys. Rev. Letters 100 (2008) 015702 .
doi: 10.1103/PhysRevLett.100.016402

[6] Coherency stresses in multilayers
G. Saada
Phil. Mag. 88 (2008) 689-709.

[7] Internal stresses in multilayers
G. Saada
Encyclopedia of materials Science and Technology
ISBN : 0 :08-043152-6, p 1-6

[8] Modelisation of plastic déformation of nanocrystalline solids-IA-166
G. Saada
Materials Science and engineering A 483 (2008) 506-508.

[9] Toward a physical model for strain hardening in fcc crystals
L. Kubin, B. Devincre et T. Hoc
Materials Science and Engineering: A 483 (2008) 19-24.

[10] Dislocation mean free paths and strain hardening of crystals
B. Devincre, T. Hoc and L. Kubin
Science 320 (2008) 1745-1748.

[11] Modeling dislocation storage rates and mean free paths in F.C.C. crystals
L. Kubin, B. Devincre and T. Hoc
Acta Mater. 56 (2008) 6040-6049.

[12] Second-order junctions and strain hardening in bcc and fcc crystals
R. Madec and L.P. Kubin
Scripta Mater. 58 (2008) 767-770.

[13] Physical modeling of strain hardening in crystals
L.P. Kubin, B. Devincre et T. Hoc
Mater. Sci. Eng. A 483-484 (2008) 19-28.

[14] Near-band-edge recombinations in multiwalled boron nitride nanotubes: Cathodoluminescence and photoluminescence spectroscopy measurements
P. Jaffrennou, J. Barjon, T. Schmid, L. Museur, A. Kanaev, J.-S. Lauret, C. Y. Zhi, C. Tang, Y. Bando, D. Golberg, B. Attal-Tretout, F. Ducastelle, and A. Loiseau
Phys. Rev. B. 77 (2008) 235422.
doi: 10.1103/PhysRevB.77.235422

[15] Analysis of a kink pair model applied to a Peierls mechanism in basal and prism plane slips in sapphire (α-Al2O3) deformed between 200° and 1800°C
M. Castillo Rodriguez, J. Castaing, A. Munoz, P. Veyssière, A. Dominguez Rodriguez, 
J. Amer. Ceram. Soc. 91 (2008) 1612-1617.

[16] Dislocation self-organization under single slip straining and dipole properties
Y.L. Chiu, P. Veyssière, 
Mater. Sci. Eng. A 483–484 (2008) 191–194.

[17] The transformation of edge dislocation dipoles in aluminium
H. Wang, D. Xu, R. Yang, P. Veyssière, 
Acta Mater. 56 (2008) 4608-4620.

[18] Molecular dynamics investigation of deformation twinning in c-TiAl sheared along the pseudo-twinning direction
D. Xu, H. Wang, R. Yang, P. Veyssière, 
Acta Mater. 56 (2008) 1065-1074.

[19] Laser-based diagnostics applied to the study of BN nanotubes synthesis
M. Cau, N. Dorval, B. Attal-Trétout, J.L. Cochon, B. Cao, L. Bresson, P. Jaffrennou, M. Silly, A. Loiseau, and E.D. Obraztsova
J. Nanosci. Nanotechnol. 8 (2008) 1-12.

[20] Effect of the synthesis method on the distribution of C, B and N elements in multiwall nanotubes: a spatially-resolved electron energy loss spectroscopy study
S. Enouz-Védrenne, O. Stéphan, M. Glerup, JL. Cochon, C. Colliex, A. Loiseau
J. of Physical Chemistry C 112 (2008) 16422.
DOI: 10.1021/jp802583y

[21] Combined STM/STS, TEM/EELS investigation of CNx−SWNTs
H. Lin, J. Lagoute, C. Chacon, R. Arenal, O. Stephan, V. Repain, Y. Girard, S. Enouz,
L. Bresson, S. Rousset, and A. Loiseau
Physica Status Solidi (b) 245 (2008) 1986.

[22] Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures
R. Arenal, O. Stephan, F. de la Pena, M. Walls, A. Loiseau, C. Colliex.
Ultramicroscopy 109 (2008) 32.
DOI: 10.1016/j.ultramic.2008.07.005

[23] Optical gap measurements of Boron Nitride nanotubes by EELS
R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex.
Microscopy & Microanalyis 14(2008)274.
DOI: 10.1017/S1431927608080331  

[24] Probing high pressure properties of single wall carbon nanotubes through fullerene encapsulation
Ch. Caillier, D. Machon, A. San Miguel, R. Arenal, G. Montagnac, H. Cardon, M. Kalbac, M. Zukalova, L. Kavan.
Physical Review B 77 (2008) 125418.
DOI: 10.1103/PhysRevB.77.125418

[25] Optical absorption of boron nitride nanomaterials
,P. Gevko, L. Bulusheva, A. Okotrub, V. Koroteev, I. Yushina, L.
Bresson and A. Loiseau
Physica Status Solidi (b) 245 (2008) 2107–2110.

[26] STEM nanodiffraction technique for structural analysis of CoPt nanoparticles
D. Alloyeau, C. Ricolleau, T. Oikawa, C. Langlois, Y. Le Bouar, A. Loiseau,
Ultramicroscopy 108 (2008) 656.

[27]Growth and structural properties of CuAg and CoPt bimetallic nanoparticles
Langlois C, Alloyeau D, Le Bouar Y, Loiseau A, Oikawa T, Mottet C, Ricolleau C.
Faraday Discuss. 138 (2008) 375-391.
doi: 10.1039/b705912b

[28] Mastering size and shape of CoPt nanoparticles by flash laser annealing
D. Alloyeau, C. Ricolleau, C. Langlois, Y. Le Bouar, A. Loiseau.
Nano Affairs, 1 (2008).

[29] A tight-binding Grand Canonical Monte Carlo Study of the Catalytic Growth of Carbon Nanotubes
H. Amara, C. Bichara, F. Ducastelle
J. Nanosci. Nanotech. 8 (2008) 6099-6104.