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Abstract

The first part of a dislocation-based constitutive formulation for strain hardening in face-centered cubic crystals is presented. This
multiscale approach is based on the storage–recovery framework expanded at the scale of slip systems. A parameter-free formulation
is established for the critical stress and the storage rate, taking advantage of recent results yielded by dislocation dynamics simulations.
The storage rate of dislocations in the presence of forest obstacles is modeled for the first time at the level of dislocation intersections and
reactions. The mean free path per slip system is found to be inversely proportional to the critical stress. It also depends on the number of
active slip systems, which leads to an orientation dependence of stage II strain hardening in agreement with experimental data. The total
storage rate is obtained by including three additional contributions, notably that of the self-interaction, which leads to a model for stage I
hardening.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Predicting on physical bases the mechanical response of
crystalline materials is a long-standing objective of disloca-
tion theory. Since early studies on pure single crystals, it is
known that the stress–strain curves of face-centered cubic
(fcc) crystals exhibit well-defined stages and orientation
dependencies (see Refs. [1–3] for reviews). Therefore, mod-
eling these features constitutes a critical test for all models
attempting to deal with more complex situations, like the
mechanical properties of polycrystals or the response to
changes in deformation paths. At present, however, no
truly predictive model is able to treat in a seamless manner
the complexity of the mechanical response, including the
transitions between stages, the number and nature of active
slip systems and the corresponding evolutions of the dislo-
cation densities.
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We present here the first part of a multiscale approach
for the mechanical response of fcc crystals in uniaxial
deformation, which incorporates a combination of model-
ing and simulations (see Ref. [4] for an outline). The mod-
eling part derives from the storage–recovery framework
that was developed by Kocks and Mecking [5] for the study
of polycrystals and further generalized by Teodosiu and
coworkers [6] at the scale of dislocation slip systems. When
applied to monotonic deformation, this extended model
includes one stored density per slip system, which is
assumed to be uniform in space.

For each slip system, the storage–recovery framework
includes two major dislocation-based equations: (i) a Tay-
lor-like equation that relates the critical stress on a slip sys-
tem to the stored densities in all slip systems [7], and (ii) an
equation for the net storage rate of dislocations per slip
system, which is the sum of a positive storage rate governed
by a dislocation mean free path and a negative term
accounting for dynamic recovery [5]. The set of equations
is closed by a flow rule, which accounts for the strain rate
rights reserved.
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sensitivity of the material and plays a minor role when the
latter is small, as is the case for fcc crystals. Complete solu-
tions for the mechanical response are then obtained by
solving this dislocation-based constitutive formulation by
a finite element code for crystalline plasticity [8–10]. Many
variants of this type of micromechanical model were devel-
oped, especially to account for dislocation patterning
effects and the response to strain rate changes. This is per-
formed by incorporating additional features like the pres-
ence of dislocation walls and the additional modeling of
a mobile density or of a density of geometrically necessary
dislocations (see e.g. [11–15] for a few representative
references). Although this type of modeling represents a
progress with respect to previous phenomenological formu-
lations, it always includes a number of free parameters.

To reconstruct the stress–strain curves of bulk fcc crys-
tals without resorting to extensive parameter fitting, advan-
tage is taken of dislocation dynamics (DD) simulations
[16,17]. These numerical experiments take advantage of
the fact that the complex problems associated with the
long- and short-range interactions between dislocation
populations can be described to a good approximation
within the framework of linear isotropic elasticity [18–20].
DD simulations are used to guide the modeling of the dis-
location-based constitutive formulation at the scale of slip
systems, as well as to determine the values of the relevant
material parameters (see Refs. [4,21,22] for more details).

This paper mainly discusses the components of a consti-
tutive formulation for the plastic deformation of fcc crys-
tals that are based on elastic dislocation mechanisms and
interactions. Part 2 is dealing with the generalized form
of the Taylor equation, which is further involved in the
expression for the storage rate, and emphasizes a proper
treatment of line tension effects. In Part 3, the storage rate
of dislocations and their mean free path in the presence of a
forest density are modeled in terms of dislocation intersec-
tions and reactions. These conditions correspond to the lin-
ear and athermal stage II of the deformation curves. The
total storage rate is obtained in Part 4 by adding three
other contributions, especially the one from self-interac-
tions, which leads to a model for strain hardening in stage
I. Concluding remarks are presented in Part 5.

2. The critical stress

2.1. The expanded Taylor relation

The Taylor relation implies that the resolved flow stress,
s, is proportional to the square root of a dislocation density
q, which is assimilated to either the total density [5] or the
total density of forest (secondary) obstacles piercing the
active slip planes [20,23]:

s ¼ alb
ffiffiffi
q
p ð1Þ

In this equation l is the shear modulus, b is the magnitude
of the Burgers vector of the dislocations and
a = 0.35 ± 0.15 in fcc metals [1,18–20]. To account for
the anisotropy of interactions between slip systems, Eq.
(1) is expanded in the form [7]:

si
c ¼ lb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

aijqj

s
ð2Þ

where si
c is now the critical stress for the activation of slip

system (i), which is determined by dislocation densities in
all slip systems (j) including (i) itself. The scalar constant
a is replaced by a matrix of coefficients aij such that

ffiffiffiffiffi
aij
p

represents the average strength of the interaction between
the two slip systems (i) and (j).

2.2. The interaction coefficients

In fcc crystals, the interaction matrix has 12 � 12 = 144
coefficients. The number of distinct coefficients is divided
by two due to the diagonal symmetry of the matrix (aij = aji)
and the occurrence of four h1 11i axes with ternary symmetry
further divides it by twelve. Hence, there are only six inde-
pendent coefficients, which are associated with six distinct
types of interactions. Three of them account for forest inter-
actions between non-coplanar slip systems, resulting in the
formation of junctions or locks, namely the Lomer–Cottrell
lock, the Hirth lock and the glissile junction. There are two
non-contact interactions for dislocations gliding in parallel
slip planes with same or different Burgers vectors, the self-
interaction and the coplanar interaction. The last interac-
tion, the collinear interaction, produces annihilations. It
occurs between dislocations gliding in two slip planes that
are cross-slip planes with respect to each other [17].

The values of the interaction coefficients were recently
determined using DD simulations [4,21,22]. They incorpo-
rate the strengthening effect of both long- and short-range
interactions between dislocations. The interaction coeffi-
cients are density-dependent (see Section 2.3) and their val-
ues are given in Table 1 for a reference dislocation density
of 1012 m�2. One may notice from this table that four inter-
action strengths,

ffiffiffiffiffi
aij
p

, exhibit similar values, those for self,
coplanar, glissile and Lomer interactions, while the Hirth
type of interaction is slightly weaker and the collinear inter-
action substantially larger. The high strength of the collin-
ear interaction prevents the activation of collinear slip
systems in normal conditions ([17,21], see Section 4.1). As
a consequence, the interaction strengths of the active slip
systems can be replaced, when necessary and to a reason-
ably good approximation, by an average interaction
strength

ffiffiffiffiffiffiffiffi
�aref
p � 0:35 ¼ a:

2.3. Correction for line tension effects

The effective line tension of a bowed out segment
includes a logarithmic term [24], which is frequently omit-
ted in the usual forms of the Taylor relation. The effect of
this approximation is clearly evidenced in the compilation
of experimental data performed by Basinski and Basinski
[23] and in further results from DD simulations [20,21].



Fig. 1. Various possible dependencies for the coefficient cf correcting the
line tension in the Taylor relation (Eq. (4)) as a function of a density qf of
forest dislocations. The drift induced by the logarithmic factor is drawn
for four values of the contribution of long-range stresses to the flow stress,
0 (local line tension only), 15, 20 and 25%.

Table 1
Values of the dimensionless coefficients determining the critical stress and the storage rate in fcc crystals, as implemented in the model (measurement
methods and variances are given in the indicated references)

a0o (self) acopla (coplanar) aortho (Hirth) a2 (glissile) a3 (Lomer) acoli (collinear)
0.122 [18] 0.122 (§ 4.2) 0.07 (updated) 0.137 [17] 0.122 [17] 0.625 [17]

po ko jo K112 K111 K001 KI = Kcopla

0.117 1.08 0.225 10.42 7.29 4.6 (§ 3.4) 180 (§ 4.2)

First two lines: the interaction coefficients values are given for a forest dislocation density of 1012m�2. The next two lines give from left to right the three
coefficients entering the mean free paths for forest interactions [4], the three mean free paths coefficients for symmetrical orientations [4] and the mean free
path coefficient for the self and coplanar interactions.
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To better describe line tension effects, the critical stress
(Eq. (2)) is modified in two steps. First, a logarithmic term
accounting for the local line tension is introduced following
a procedure that was devised for analyzing the results of
DD simulations [21]. This term only applies to the three
interaction coefficients related to interactions between junc-
tion-forming slip systems. As approximations can be toler-
ated in the logarithmic term, the curvature radius Ri of
segments (i) interacting with a total density qf of junc-
tion-forming forest obstacles is taken in the form
Ri � C=bsi

c; with C � lb2 and si
c ¼ lb

ffiffiffiffiffiffiffiffiffiffiffiffi
�arefqf

p
, where the

interaction coefficients for forest interactions are replaced
by their mean value taken at the reference density of
1012 m�2. The argument of the logarithmic term is then
Ri=b � 1=b

ffiffiffiffiffiffiffiffiffiffiffiffi
�arefqf

p
and:

aij ¼ aij;ref

log1=b
ffiffiffiffiffiffiffiffiffiffiffiffi
�arefqf

p
log1=b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�arefqref

p
 !2

ð3Þ

In a second step, the non-local contribution to the line ten-
sion, arising from the long-range interactions of a given
segment with other segments is taken into account. Fore-
man [25] showed that, for simple configurations, this con-
tribution introduces a small additive constant to the
logarithmic term, which depends on the local environment
of the dislocation lines. Large-scale DD simulations per-
formed for forest densities of the order of qref = 1012 m�2

indicate that long-range stresses contribute globally to
about one-fifth of the critical stress (see, e.g., [26]). Then,
the interaction coefficients are eventually written in the

form
ffiffiffiffiffi
aij
p ¼ cf

ffiffiffiffiffiffiffi
aref

ij

q
, with

cf ¼ 0:2þ 0:8
logð1=b

ffiffiffiffiffiffiffiffiffiffiffiffi
�arefqf

p Þ
logð1=b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�arefqref

p Þ ð4Þ

Fig. 1 shows a plot of several possible dependencies of this
corrective term as a function of the forest density qf. In the
range of densities typically spanned along stress–strain
curves, the average interaction coefficient can decrease by
more than one-half of its initial value, while the relative
weight of long-range stresses significantly increases. This
fully justifies adopting a more precise treatment of the line
tension.

In what follows, the coefficients representing forest
interactions incorporate the correction given by Eq. (4).
A similar correction should apply in principle to the collin-
ear interaction, which is a particular type of forest reaction.
The self-interaction involves a rather complex mixture of
mechanisms, and the same probably holds for the coplanar
interaction, which seems to behave in the same manner. As
there is no obvious way to define the logarithmic correction
in terms of the dislocation microstructures, these two coef-
ficients are not corrected (see Section 4.1).

3. Mean free path and storage rate for junction-forming

interactions

The formation and destruction of junctions is classically
held responsible for strain hardening during stage II [1]. In
this part, we estimate the rate at which mobile segments are
stored by their interaction with the density already stored
in junction-forming (forest) slip systems. For the sake of
clarity, the derivation is performed in three steps, which
deal, respectively, with the incorporation of junctions in
the stored density, the storage rate of an active slip system
interacting with an inactive forest and finally the case of
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general interest where several active systems mutually inter-
act. Three dimensionless parameters are defined in this
part, which are material constants for all fcc crystals. Their
values were recently determined by DD simulations [4] and
are given in Table 1.

3.1. The treatment of junctions

The junction density constitutes a non-negligible frac-
tion of the stored density (about 30%, see [4,21]), hence spe-
cial care is taken to account for it. Within the present
framework, however, the only dislocation density variables
are the densities stored per slip system. As the strengths of
the three types of junctions are not very different, both par-
ent segments and junction lines have similar interactions
with incoming mobile segments. This allows lumping all
junction densities into the densities stored in the active slip
systems. This procedure also allows taking into account
multijunctions [27,28], i.e. higher order reactions between
dislocation lines. The latter occur when a junction formed
by a reaction between segments moving in two slip systems
further reacts with a segment moving in a third slip system.

In practice, the following procedure is used. A junction
between two slip systems (i) and (j) can be formed in two
different manners. It can be formed by mobile dislocations
of system (i) that react with the stored forest density (j) or
vice versa. We make a distinction between these two types
of junctions by using the notation (i ? j) or (j ? i), where
the first index is that of the moving dislocations. Then, as
illustrated by Fig. 2, dislocations of type (i ? j) or (j ? i)
are converted into stored densities in slip systems (i) and
(j), respectively. Although one can imagine different man-
ners of distributing junction densities into the stored densi-
ties, the present one is most reasonable. Indeed, it does not
attribute large junction densities to weakly active slip sys-
Fig. 2. This figure is drawn in the slip plane (Pj) of a stored segment (j)
pinned by junctions at A and B. In a plane (Pi), an incoming dislocation (i)
has formed a junction of type (i ? j) along the intersection line of the two
slip planes. By convention, the junction line is attributed to slip system (i)
and interacts with (i) dislocations gliding in planes (P0 i) via the self-
interaction. This junction is, however, not a forest obstacle for dislocations
(j) moving in slip planes (P0 j).
tems having relatively small stored densities. Using this
procedure entails, however, distinguishing between react-
ing and non-reacting junctions. As shown in Fig. 2, a junc-
tion line of type (i ? j), which is lumped into slip system (i),
cannot constitute a forest obstacle for further incoming
segments in system (j). It can nevertheless react with all
other forest slip systems of (i).

3.2. Storage rate induced by non-active forest slip systems

In what follows, the subscript (o) denotes variables spe-
cific to this section, which will be further rediscussed. In a
first step, we consider a slip system (i) interacting with an
inactive forest consisting of slip systems (j) – (i), in density
qj

o. This forest is made up of segments of average length �‘j
o.

According to the rule defined above for redistributing junc-
tions into slip systems, all the junctions formed during the
motion of dislocations (i) are attributed to slip system (i).
Then, each segment stored in (i), of average length �‘i

o, con-
tains two parent segments and one junction (Fig. 2). In a
volume V of crystal, during a shear increment dci on system
(i), the swept area is dAi = dciV/b. The number of intersec-
tions occurring in the swept area between dislocations (i)
and forest segments (j) is denoted dNi?j. In the direction
perpendicular to the slip planes of (i), the forest segments
have a projected height /�‘j

o (Fig. 2), where / is a geomet-
rical factor taking into account their average inclination
with respect to the primary slip planes (/ � 0.6, see Appen-
dix A). The total length stored in a volume dAi/�‘j

o is
dNi!j �‘j

o and the density of forest trees in this volume is
qj

o ¼ dN i!j=/dAi. Thus, the number of intersections of type
(i ? j) is:

dNi!j ¼ /qj
odAi ¼ /qj

odciV =b ð5Þ
Repulsive intersections, as well as weakly attractive junc-
tions cannot form junctions, so that only a fraction fo of
the total number of intersections is actually forming stable
reaction products under stress. This fraction is taken pro-
portional to the strength of the interaction between slip sys-
tems (i) and (j),

ffiffiffiffiffi
aij
p

, so that the number of junctions
formed, dN i!j

jct , is written dNi!j
jct ¼ fo

ffiffiffiffiffi
aij
p

dNi!j. The total
number of junctions formed with all forest systems (j) dur-
ing the shear increment dci is then written dNi!

jct . It is ob-
tained by replacing the number of intersections dNi?j by
its value, as given by Eq. (5), and performing a summation
over all forest slip systems:

dNi!
jct ¼ po

V
b

X
j2f i

ffiffiffiffiffi
aij
p

qj
o

 !
dci ð6Þ

In this expression, po = fo/ is a dimensionless constant and
the index fi refers to all the forest slip systems seen by dis-
locations (i).

The formation of each junction stores a length �‘i
o in sys-

tem (i) and increments the density stored by �‘i
o=V . The total

density dqi
o stored in system (i) during a shear strain incre-

ment dci is then given by �‘i
odNi!

jct =V . Combining this expres-
sion with Eq. (6), we have:
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dqi
o

dci
¼ po

�‘i
o

b

X
j2f i

ffiffiffiffiffi
aij
p

qj
o

 !
ð7Þ

The average length �‘i
o of the stored segments (i), which ap-

pears in Eq. (7), can be estimated in a straightforward man-
ner. As is known from dislocation theory, �‘i

o is inversely
proportional to the critical stress on system (i). Hence,
one can write �‘i ¼ kolb=si

c, where ko is a second dimension-
less constant. Making use of Eq. (2), we have:

�‘i
o ¼

koffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j aijq

j
o

q ð8Þ

It follows from the definition of the critical stress that the
summation in the denominator has to be carried out on
all slip systems.

The density of junctions in the active slip system can
now be derived. From the ratio of junction lengths �‘i

jct to
the corresponding average segment lengths �‘i

o, or, equiva-
lently, of the related densities, one can define a third dimen-
sionless constant:

jo ¼
qi

jct

qi
o

¼
�‘i

jct

�‘i
o

ð9Þ

DD simulations show that jo is a constant to a good
approximation [4].

3.3. Storage rate induced by active forest slip systems

In this last step, we relax the assumption that forest slip
systems are inactive, which entails modifications in the den-
sities and average lengths of active slip systems. These
quantities are denoted like in the previous step, except that
the index (o) is removed. During a shear strain increment
dci, the forest slip systems of (i) may produce a shear strain
increment dcj. They form junctions of type (j ? i) with the
density stored in (i), which are transferred from system (i)
to its forest systems. The total junction density of this type
is written:

q!i
jct ¼

X
j2f i

qj!i
jct ð10Þ

and the density qi is given by:

qi ¼ qi
o � q!i

jct ð11Þ
The average length of segments (i), �‘i

o, is also reduced and
becomes �‘i, while the corresponding densities are reduced
in the same proportion. One then has:

�‘i

qi
¼

�‘i
o

qi
o

ð12Þ

This ratio is not a constant because its evolution with strain
depends on the activity of the forest slip systems. Eliminat-
ing ‘i

o and qi
o from Eq. (12) with the help of Eqs. (8) and

(11), one easily obtains:

�‘i ¼ koffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j aijðqj þ q!j

jct Þ
q qi

qi þ q!i
jct

 !
ð13Þ
The reasoning used to derive the storage rate given by Eq.
(7) is now applied to the incremental stored density dqi.
The net result amounts to simply replacing the average
length �‘i

o by �‘i and the forest densities qj
o by qj. This

accounts, respectively, for the transfer of junction densities
from slip system (i) to its forest systems and vice versa. In
addition, dislocations (i) do not see the junctions of type
(j ? i) as forest obstacles (cf. Fig. 2). This density of
non-reacting junctions is, therefore, removed from the den-
sity qj, which becomes qj � qj!i

jct . Eq. (7) is then rewritten
as:

dqi

dci
¼ po

�‘i

b

X
j2f i

ffiffiffiffiffi
aij
p

qj
� �

1�
P

j2f i
ffiffiffiffiffi
aij
p

qj!i
jctP

j2f i
ffiffiffiffiffi
aij
p

qj

 !
ð14Þ

As the last term at the right-hand side of this equation is a
corrective term, it can be simplified by replacing the inter-
action coefficients in the numerator and the denominator
by their average value (cf. Section 2.3). One eventually
obtains:

dqi

dci
¼ 1

b
pokoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j aijðqj þ q!j
jct Þ

q qi

qi þ q!i
jct

 ! X
j2f i

ffiffiffiffiffi
aij
p

qj

 !
1�

q!i
jct

qi
f

 !

ð15Þ
where the average length �‘i is replaced by its value given by
Eq. (13). One can note at this step that the storage rate has
the dimension of the square root of a dislocation density.
This point will be further developed in Section 4.3.

To obtain the final form of this storage rate, one has to
estimate junction densities of the form q!j

jct or q!i
jct , which

are involved in Eqs. (13) and (15). This calculation is per-
formed in Appendix B, by deriving an evolutionary law
for the storage rate of these densities. One obtains (Eqs.
(B.5) and (B.6)):

dq!i
jct ¼ jo

poko

b

qi
P

j2f i
ffiffiffiffiffi
aij
p

dcjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j aijðqj þ q!j

jct Þ
q 1�

q!i
jct

ðn� 1Þqi

� �
ð16Þ

In this equation, the constant jo is defined by Eq. (8) and n

is the number of active slip systems, so that (n�1) is the
number of forest systems seen by system (i). Once it is in-
serted into the whole constitutive formulation, the set of
coupled Eqs. (15) and (16) allows estimating the storage
rate due to forest interactions.

3.4. A textbook case: symmetrical multiple slip

The properties of the mean free path associated with for-
est interactions become more transparent in the case of
deformation along high symmetry orientations, that is, in
symmetrical multiple slip conditions. To keep this example
simple, the interaction coefficients are replaced by their
average value and the line tension correction is omitted.

The slip systems indexes are now removed and the den-
sity and incremental shear strain per slip system are
denoted q and dc, respectively. The total stored density is



Fig. 3. Computed shear stress–shear strain curves of copper crystals for
three symmetrical orientations showing linear stage II slopes (dashed
lines). The slight curvatures are due to the drift of the interaction
coefficients induced by line tension effects (Section 2.3). The curve s.g. is
drawn for single glide in the presence of a constant forest density of
109 m�2 (Section 4.2).
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qt = nq and the forest density associated with each slip sys-
tem is qf = (n�1)q. In each slip system, the line density lost
by junction transfer to other slip systems, q!i

jct , is identical
to the density of junctions transferred from other slip sys-
tems, qi!

jct , and q!i
jct ¼ qi!

jct ¼ qjct. From Eqs. (9) and (11),
one has:

jo ¼
qjct

qo
¼

qjct

qþ qjct
ð17Þ

from which one draws:

qjct ¼ q
jo

1� jo
¼ jq ð18Þ

This expression defines a new constant, j = jo/(1 � jo),
which is specific to symmetrical deformation conditions.

Using these new notations, the evolutionary Eq. (15)
yields the storage rate in each slip system or, equivalently,
the total storage rate:

dq
dc
¼ dqt

dct
¼ 1

bLf
¼ poko

b

qfffiffiffiffi
qt
p ð1þ jÞ3=2

1� j
n� 1

� �
ð19Þ

where Lf is the mean free path associated with forest inter-
actions. The density terms at the right-hand side reduce to
ðn� 1Þ ffiffiffiffiqt

p
=n. Rearranging the terms to introduce the crit-

ical stress, one has:

1

Lf
¼ poko

ð1þ jÞ3=2

sc

lb
ffiffiffi
�a
p n� 1� j

n

� �
ð20Þ

From this expression, one can see that the mean free path
associated with forest interactions exhibits two important
properties. First, it is inversely proportional to the critical
stress or to the square root of the total density. The sec-
ond property is a dependence of the storage rate on the
number n of active slip systems, through its total forest
density, which induces an orientation dependence of strain
hardening in stage II. This feature was never consistently
modeled, although it is clearly visible in experimental
stress strain curves [1,3]. Lumping all constant coefficients
into a dimensionless and orientation-dependent coefficient
Khkl, the mean path Lf can eventually be set in the simple
forms:

Lf ¼ Khkl
lb
sc
¼ Khklffiffiffiffiffiffiffi

�aqt
p ð21Þ

The coefficient Khkl depends on the average interaction
strength and on the set of constants po, ko and jo (or j).
The values of these last constants can hardly be calculated
but are conveniently computed using DD simulations ([4],
see Table 1). This allows cross-checking the value of the
coefficient Khkl, which can also be estimated from Eqs.
(20) and (21), and verifying that the proposed model repro-
duces well the output of DD simulations.

In symmetrical conditions and in stage II, the strain
hardening matrix reduces to a scalar term hII = dsc/dct.
This term can be obtained as the product of the derivative
of the critical stress (Eq. (2)) with respect to the total den-
sity, dsc/dqt, by the total storage rate (Eq. (20)). Omitting
the logarithmic dependence of the interaction coefficients,
one easily obtains a constant work hardening rate for each
orientation of the loading axis:

hII

l
¼ �a

2Khkl
/ n� 1� j

n
ð22Þ

The work hardening rate in stage II was computed from a
form similar to Eq. (22), obtained by taking into account a
logarithmic dependence of the coefficient �a through Eq. (3).
The stress–strain curves are integrated in a strain domain
that is representative of stage II behavior. The results are
shown in Fig. 3 for copper crystals (l = 42 GPa,
b = 0.256 nm). The linear work hardening slopes are in
close agreement with commonly measured values, espe-
cially those given in the detailed study by Takeuchi [29].
For instance, the work hardening rate is hII = l/290 for
the ½�112� orientation and is about two times this value for
the [001] orientation (2.5 times upon making the correction
discussed in Section 4.1). In the same way, the maximum
hardening slopes at small strains are close to those mea-
sured by Takeuchi (see Fig. 9 of Ref. [29]). Finally, the
rather simple form of the strain hardening rate given by
Eq. (22) allows justifying the incorporation of junction
lines into the present model, and the complications it en-
tails, through its non-negligible impact on strain hardening
(cf. Appendix C).
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4. Other storage rates

The total storage rate includes contributions from three
additional interactions. The first one arises from collinear
slip, i.e., the simultaneous activation of a slip system and
its cross-slip system. Collinear annihilations can be mod-
eled as a particular type of forest interaction resulting in
the formation of junctions with null Burgers vector. For
the present purpose, however, this contribution can be
accounted for in a simple manner. A model for the self-
interaction and its application to single slip in stage I was
proposed in [30] and we present here an updated version,
which is partly based on recent results from DD simula-
tions [22]. The last contribution to the storage rate is due
to coplanar duplex slip. These three contributions arise
from the occurrence of either collinear segments or small
collinear superjogs and they involve rather complex dislo-
cation interactions.

4.1. Collinear double slip

As was shown in previous publications [17,21], uncon-
strained double collinear glide is unstable due to the high
strength of the collinear interaction and results in the selec-
tion of one of the two slip systems at the expense of the
other. In uniaxial deformation, this situation is met for
two loading axes, ½�111� and [001], for which both the slip
and cross-slip systems have the maximum Schmid factor.
The selection rule being verified for the ½�111� orientation
[31], there is no point in introducing a storage rate due to
collinear slip in that case. The model then predicts the
occurrence of three active slip systems, whereas six are
potentially active.

The situation is more confused for orientations in the
immediate vicinity of [001]. Slip traces corresponding to
all collinear slip systems are observed but, in general, only
one set of two collinear slip systems is found to be active
in a given area of the specimen’s surface [32]. In parallel,
strain hardening substantially increases within two to four
degrees from the exact orientation [33]. DD simulations car-
ried out up to strains of the order of 1% [22] reveal in this
case the occurrence of a mechanism that is specific to the
[001] orientation. In substance, collinear segments are
dragged by primary segments, which enforces the activation
of collinear dislocation sources and of collinear slip. This
mechanism not being incorporated into the present model,
DD simulations show that the predicted storage rate is too
small by a factor of 1.35 [4]. This difference is due to reac-
tions between the collinear density and its cross-slip and
forest systems. To account for it in the case of forest inter-
actions in the [001] orientation, the storage rate yielded by
the model is simply multiplied by the missing factor.

4.2. Storage rate induced by self and coplanar interactions

The influence of the self-interaction manifests itself
clearly during the low strain hardening stage, also called
stage I or easy glide stage, that is observed when a single
slip system is active. The main two characteristic features
of the microstructures formed in this stage are: (1) the
occurrence of dipolar or multipolar bundles of dislocation
loops made up of elongated primary edge segments and
short collinear jogs, and (2) the striking absence of any sig-
nificant screw density. As discussed in [2,22], this micro-
structure is formed through a complex sequence of
events. The collinear jogs are produced by the mutual anni-
hilation of screw dislocations by cross-slip, which is mostly
stress-driven under the low applied stress. This process
leads to the formation of a small density of very short edge
segments in the cross-slip planes of the primary slip system.
After rather complex interactions, these superjogs are
stored in the elongated dipolar loops. In a critical review
of models for stage I, Nabarro [2] lists evidences according
to which stage I hardening is not due to dipole formation
and destruction but arises from the stress-driven annihila-
tion of screw segments by cross-slip and the subsequent
formation of collinear superjogs. This approach is revisited
below.

Basinski [23] showed that the Taylor relation can be
extrapolated down to the low-stress stage I, which indicates
the presence of forest hardening. The latter is attributed to
forest dislocations, of which the density is experimentally
found to be a constant fraction, typically 10%, of the pri-
mary density [1,22]. These forest dislocations essentially
arise from the continuous production of a collinear super-
jog density of about 0.1qp, and strongly interact with the
primary dislocations. The contribution of this density to
forest hardening is then written in the form a0oq

p, where
the coefficient a0o accounts for both the constant ratio of
collinear to primary density and the strength of the interac-
tion between primary mobile segments and superjogs. Due
to the small size of the latter, this interaction cannot be
treated like a typical forest interaction between segments
of length q�1/2. The self-interaction coefficient a0o should,
nevertheless, have a value typical of forest interactions
since the Taylor relation is experimentally verified. This
was confirmed by DD simulations incorporating a density
0.1qp of collinear superjogs [22], which yielded a0o � a3

= 0.122, where a3 is the interaction coefficient associated
with the interaction between primary and conjugate slip.

By analogy with symmetrical multiple slip (Eq. (21)), the
storage rate is written in the form:

dqp

dcp
¼ 1

bLI
¼

ffiffiffiffiffiffiffiffiffi
a0oqp

p
bKI

ð23Þ

The plastic strain cp is carried out by segments of all char-
acters, and LI and KI denote respectively the mean free
path for self-interactions and the related mean free path
constant. Because Stage I involves a multiplicity of interac-
tion mechanisms and a very long mean free path, it seems
difficult to fully model it with the aid of DD simulations. In
what follows, we estimate a plausible value for the constant
KI.
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We assume that the primary density stored in the form
of edge dipolar or multipolar bundles represents the total-
ity of the edge density that was produced by multiplication
mechanisms. In parallel, the whole screw density that was
produced was annihilated, leading to the storage of a col-
linear density of about 0.1qp. Dislocation segments are
elongated in the screw direction, due to the smaller line
energy in the screw orientation. The aspect ratio of half-
loops, which we assimilate to the ratio of screw to edge
densities, is about 1.7 in copper, according to refined calcu-
lations in anisotropic elasticity [34,35], with, however, a
significant uncertainty. Thus, a screw density of about
1.7qp has resulted in the storage of a collinear density of
0.1qp, that is, 17 times less. Forest interactions, as modeled
in Part 3, involve storage events but no annihilations. Thus,
in terms of storage rate, the self-interaction is less efficient
than a forest mechanism and, with K112 = 10.4 (cf. Table
1), one should have KI � 17K112 � 180. Although this
value is implemented in the present model, it must be noted
that it involves some uncertainty. For a stress of 1 MPa,
this corresponds to a mean free path value LI � 1.8 mm,
which is large in comparison to the typical slip line lengths
of 600 lm measured in stage I [4]. As discussed in Part 5
this difference is inherent to the continuous description of
the mean free path.

The strain hardening coefficient is derived like in Section
3.4. As the effect of the initial forest density becomes neg-
ligible soon after the yield stress, Eq. (23) is combined with
the derivative of the critical stress sp

c � lb
ffiffiffiffiffiffiffiffiffi
a0oq

p
p

with
respect to the primary density. In simplified terms, the
strain hardening rate takes a form similar to that of Eq.
(21), hI � a0o/2KI. Fig. 3 shows a resolved stress vs. strain
curve for single glide, calculated for a constant forest den-
sity of 109 m�2 and with a0o ¼ 0:122 and KI = 180. The
strain hardening rate is hI = l/3100, in agreement with
experimental values [3].

Very little is known about the interaction between
coplanar slip systems, as the corresponding microstructures
have never been investigated to the knowledge of the pres-
ent authors. Double coplanar slip is often observed along
the lower portion of the ½011� � ½�111� zone axis and close
to the [011] orientation [29]. The corresponding stress–
strain curves exhibit an initial strain hardening stage quite
similar to that of stage I, as was first noted by Jackson [36].
This suggests that the coplanar and self-interactions have
in common the formation of a small collinear density via
screw dislocation cross-slip and can be treated in a similar
manner. For this reason, we take acopla = a0o for the inter-
action coefficient and Kcopla = KI for the mean free path
constant.

4.3. Total storage rate

The total storage rate, excluding the negative term aris-
ing from dynamic recovery, is obtained by summing the
individual storage rates or the inverses of the related mean
free paths:
dqi

dci
¼ 1

b
1

Lf
þ

ffiffiffiffiffiffiffiffi
a0oq

i
p

KI
þ

P
j2coplaðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acoplaqj

p
Kcopla

0
B@

1
CA ð24Þ

The first term at the right-hand side describes the contribu-
tion from the three junction-forming interactions. The sec-
ond term accounts for the self-interaction and the third
term accounts for coplanar interactions. This last term in-
cludes a summation since a slip system has two possible
coplanar slip systems in the fcc structure.

5. Concluding remarks

The present work presents the major part of a disloca-
tion-based constitutive formulation for strain hardening
in fcc crystals, which is based on the storage–recovery
framework expanded at the scale of slip systems. A sub-
stantial effort is devoted to establish a parameter-free
model, taking advantage of a wealth of information
recently yielded by DD simulations. As a result, a set of
dimensionless coefficients valid for all fcc crystals is pro-
posed, which allows bypassing parameter-fitting
procedures.

It is shown that refining the critical stress to include a
logarithmic term removes a significant source of numerical
inaccuracy. The storage rate of dislocations in the presence
of forest obstacles, or alternatively the mean free path of
dislocations, is modeled for the first time at the level of
average dislocation intersection mechanisms. In particular,
care is taken to account for the presence of a junction den-
sity in the microstructure. The storage rate is found pro-
portional to the critical stress and it exhibits a
dependence on orientation that is directly related to the
number of active forest slip systems interacting with each
active slip system. This allows explaining the orientation
dependence of strain hardening in stage II, in agreement
with experimental data. The total storage rate is obtained
by including three additional contributions from non-forest
interactions. The most important one is the self-interaction,
for which an additional model that leads to stage I harden-
ing is proposed. As the formulation presented here is
mostly dealing with elastic interactions, it is potentially
adaptable to a variety of crystal structures.

The difference noted in Section 4.2 between the contin-
uum mean free path LI and the length of slip traces dur-
ing stage I arises from the quite general fact that
although these two lengths are related, they are not iden-
tical. In the recent years, investigations of dislocation
avalanches and the intermittent nature of dislocation
glide in crystals ([37], see the review [38]) have brought
a new insight into the statistical properties of collective
slip events produced by dislocation strain bursts. A recent
study by DD simulations [4], showed, however, that this
intermittent behavior and the present continuum model
can be made fully compatible through a coarse-graining
procedure. A consequence of interest is that the mean
free path values defined in the continuum are virtual
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because they do not describe the real strain burst behav-
ior. After coarse-graining, the intermittent storage rate of
avalanches is replaced by a storage rate that is necessarily
smaller since it evolves in a continuous manner. It follows
that continuum mean free paths are larger than charac-
teristic avalanche dimensions, that is, typically, slip line
lengths. This explains the origin of the above-mentioned
difference.

At this step, one may note that elastic dislocation pro-
cesses are treated without accounting directly or indirectly
for dislocation patterning phenomena. This can be justified
from the fact that the Taylor relation is rather insensitive to
the spatial arrangement of the dislocation microstructure
[20,23]. Since the two basic constitutive relations discussed
in the present work incorporate this relation in the form of
a critical stress, there is no need to introduce any additional
feature accounting for dislocation patterning. This holds
true at least for monotonic uniaxial loading. In such condi-
tions, the use of a single dislocation density variable per
slip system seems justified. In forthcoming papers, the pres-
ent model will be completed and solved using a crystal plas-
ticity code in order to predict the mechanical response of
fcc crystals and compare it to experimental data. This will
allow discussing its limitations and possible extensions in
more depth.
Appendix A. The geometrical factor /

We consider two slip systems with slip planes (111) and

ð�111Þ, which intersect each other along the screw direction

½0�11�. One can check easily that the random unit direction

of dislocation lines in the ð�111Þ plane can be parametrized

in the form ½2t; t �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

; t þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 þ 1
p

�, where t

ranges from 0 for the screw direction to 1 for the edge
direction [211]. The angle h between this random direction

and the [111] normal is given by cos h ¼ 4t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4t2 þ 2Þ

p
.

Assuming a uniform distribution of dislocation characters,
the geometrical constant / is the average value of cosh
between t = 0 and t = 1. By taking u = 4t2 as variable,
the integration step is carried out in a straightforward man-

ner, leading to: / ¼ ð
ffiffiffi
6
p
�

ffiffiffi
2
p
Þ=

ffiffiffi
3
p
� 0:6.
Appendix B. Evolutionary law for junction densities

An evolutionary law for the total junction density q!i
jct ,

which is transferred from slip system (i) to its forest den-
sity, is established by retracing the steps made in the text
to derive the storage rate. Eq. (5) was obtained by consid-
ering that slip system (i) is active, whereas its forest systems
are inactive. This equation is rewritten for the opposite sit-
uation where slip system (i) is inactive, whereas its forest
slip systems are active. This yields:

dN!i
jct ¼ po

X
j2f i

qi
o
ffiffiffiffiffi
aij
p

dci

 !
V =b ðB:1Þ
According to Eq. (9), all junctions involving system (i) have
the same length �‘i

jct ¼ jo
�‘i

o, so that the incremental junction
density transferred to the forest slip systems is jo

�‘i
odN!i

jct .
One then obtains an expression analogous to Eq. (7):

dq!i
jct ¼ jo

po
�‘i

o

b

X
j2f i

qi
o
ffiffiffiffiffi
aij
p

dcj

 !
ðB:2Þ

The condition that the density qi
o is immobile is now re-

laxed by replacing qi
o by qi. The average length of junctions

�‘i
jct ¼ jo

�‘i
o is not modified since it is not affected by their

redistribution among slip systems. In addition, mobile dis-
locations (j) do not see the junctions of type (i ? j) as forest
obstacles (Fig. 2) and the density of non-reacting junctions
qi!j

jct has to be removed from the density qi. One then
obtains:

dq!i
jct ¼ jo

po
�‘i

o

b

X
j2f i

ffiffiffiffiffi
aij
p ðqi � qi!j

jct Þdcj

 !
ðB:3Þ

The summation applies to all terms containing an index (j),
the density qi being incorporated into it for convenience.
After some manipulation, one obtains an expression anal-
ogous to Eq. (18):

dq!i
jct ¼ jo

po
�‘i

oq
i

b

X
j2f i

ffiffiffiffiffi
aij
p

dcj

 !
1�

P
j2f i

ffiffiffiffiffi
aij
p

qi!j
jct dcj

qi
P

j2f i
ffiffiffiffiffi
aij
p

dcj

 !

ðB:4Þ
The elementary junction densities qi!j

jct cannot be esti-
mated within the present framework. We then assume
by default that they are all identical. If there are n active
slip systems, the summation on the junction densities
yields qi!j

jct ¼ qi!
jct =ðn� 1Þ. This leads to an exact result

in two important extreme cases. The first one is symmet-
rical multislip conditions, where densities are identical in
all active slip systems. The second one is the highly dis-
symmetrical transition between stage I and stage II, dur-
ing which the primary slip system interacts with a single
active forest system. In that case, n = 2 and qi!j

jct ¼ qi!
jct .

Within this approximation, the general deformation con-
ditions are treated by interpolation between these two ex-
treme cases. The last term at the right-hand side of Eq.
(B.4) reduces to qi!

jct =ðn� 1Þqi and the final result is
written:

dq!i
jct ¼ jo

po
�‘i

oq
i

b

X
j2f i

ffiffiffiffiffi
aij
p

dcj

 !
1�

qi
jct

ðn� 1Þqi

� �
ðB:5Þ

where the average length �‘i
o can be deduced from Eqs. (8)

and (11):

�‘i
o ¼

koffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j aijðqi þ q!i

jct Þ
q ðB:6Þ

The combination of Eqs. (B.5) and (B.6) leads to Eq. (16)
of the text.
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Appendix C. The impact of junction densities on strain-

hardening

The results obtained in Section 4.3 allow answering in
simple terms the following question: what is the effect of
junctions on strain hardening? The effect of usual (binary)
junctions is directly obtained from Eq. (22) by setting the
junction length to zero, i.e., by taking j = 0. The orienta-
tion factor (n � 1 � j)/n then becomes (n � 1)/n. With
j = 0.3 (Table 1), the strain hardening rate increases by
30% for the ½�112� orientation and the ratio of strain hard-
ening rates between [001] and ½�112� decreases by 28%.
These differences are substantial.

We now consider the effect of neglecting multijunctions,
that is, reactions of mobile dislocations with non-coplanar
binary junctions [28], which occur for the [001] and ½�111�
orientations. In this case, the formation of binary junctions
is accounted for but their further reaction with dislocations
on intersecting slip systems is forbidden. In Eq. (19), the
last term at the right-hand side accounts for the non-inter-
acting junction density, as defined in Fig. 2. Counting the
number of interacting and non-interacting densities for
the [001] orientation, one finds that there are three densities
of each type. The fraction j of interactions to be removed
from Eqs. (19) and (22) must then become 2j. For the ½�111�
orientation, the same count yields two non-interacting den-
sities for one interacting density; hence j has to be replaced
by 3j/2. From Eq. (22), the ratio of strain hardening with
and without multijunctions, respectively hII and h�II , is given
by:

hII

h�II

� �
001

¼ 1� j=3

1� 2j=3
¼ 1:125;

hII

h�II

� �
�111

¼ 1� j=2

1� 3j=4
¼ 1:15 ðC:1Þ

Thus, omitting multijunctions decreases strain hardening
by 12–15%, in agreement with a rule of thumb calcula-
tion given in Ref. [29]. In summary, treating junctions
as point obstacles significantly increases strain hardening
and reduces its orientation dependence, whereas omitting
multijunctions reduces strain hardening almost uniformly
and by a smaller extent on the [001] and ½�111�
orientations.
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